Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' splątanie kwantowe'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 2 results

  1. Fizycy z Chin zaprezentowali wersję gry go opierającą się na mechanice kwantowej. W swojej symulacji naukowcy wykorzystali splątane fotony do ustawiania kamieni na planszy, zwiększając w ten sposób trudność gry. Ich technologia może posłużyć jako pole testowe dla sztucznej inteligencji. Wielkim wydarzeniem końca XX wieku było pokonanie arcymistrza szachowego Garry'ego Kasparowa przez superkomputer Deep Blue. Jednak go stanowiło znacznie trudniejsze wyzwanie. Ta gra o bardzo prostych zasadach posiada bowiem więcej kombinacji niż szachy. Jednak 20 lat później, w 2016 roku dowiedzieliśmy się, że SI pokonała mistrza go. Jednak szachy i go to gry o tyle łatwe dla komputerów, że na bieżąco znany jest stan rozgrywki. Nie ma tutaj ukrytych elementów. Wiemy co znajduje się na planszy i co znajduje się poza nią. Zupełnie inne wyzwanie stanowią takie gry jak np. poker czy mahjong, gdzie dochodzi element losowy, nieznajomość aktualnego stanu rozgrywki – nie wiemy bowiem, co przeciwnik ma w ręku – czy też w końcu blef. Także i tutaj maszyny radzą sobie lepiej. Przed rokiem informowaliśmy, że sztuczna inteligencja wygrała w wieloosobowym pokerze. Xian-Min Jin z Szanghajskiego Uniwersytetu Jiao Tong i jego koledzy postanowili dodać element niepewności do go. Wprowadzili więc doń mechanikę kwantową. „Kwantowe go” zostało po raz pierwszy zaproponowane w 2016 roku przez fizyka Andre Ranchina do celów edukacyjnych. Chińczycy wykorzystali tę propozycję do stworzenia systemu, który ma podnosić poprzeczkę sztucznej inteligencji wyspecjalizowanej w grach. W standardowej wersji go mamy planszę z 19 liniami poziomymi i 19 pionowymi. Na przecięciach linii gracze na przemian układają swoje kamienie, starając się ograniczyć nimi jak największy obszar planszy. W kwantowej wersji go ustawiana jest natomiast para splątanych kamieni. Oba kamienie pozostają na planszy dopóty, dopóki nie zetkną się z kamieniem z sąsiadującego pola. Wówczas dochodzi do „pomiaru”, superpozycja kamieni zostaje zniszczona i na planszy pozostaje tylko jeden kamień, a nie splątana para. W go gracz może zbić kamienie przeciwnika wówczas, gdy ustawi swoje kamienie na wszystkich sąsiadujących z przeciwnikiem polach. Jednak by do takiej sytuacji doszło w „kwantowym go” wszystkie otoczone kamienie przeciwnika muszą być kamieniami klasycznymi, żaden z nich nie może pozostawać w superpozycji z innym kamieniem na planszy. Jednak gracze nie wiedzą, który z kamieni w jakim stanie się znajduje, dopóki nie dokonają pomiaru. Jin i jego koledzy wyjaśniają, że ich symulacja pozwala na dostrojenie procesu pomiaru poprzez manipulacje splątaniem. Jeśli kamienie w danej parze są splątane w sposób maksymalny, to wynik pomiaru będzie całkowicie przypadkowy, nie potrafimy przewidzieć, który z kamieni po pomiarze pozostanie na planszy. Jeśli jednak splątanie będzie mniej doskonałe, jeden z kamieni będzie miał większą szansę na pozostanie na planszy. To prawdopodobieństwo będzie znane tylko temu graczowi, do którego kamień należy. Gra traci w tym momencie swoją całkowitą nieprzewidywalność, jednak pozostaje w niej duży element niedoskonałej informacji. Chińczycy przekuli teorię na praktykę tworząc pary splątanych fotonów, które były wysyłane do rozdzielacza wiązki, a wynik takiego działania był mierzony za pomocą czterech wykrywaczy pojedynczych fotonów. Jeden zestaw wyników reprezentował „0” a inny „1”. W ten sposób oceniano prawdopodobieństwo zniknięcia jednej z części pary wirtualnych kamieni ustawianych na przypadkowo wybranych przecięciach linii przez internetowe boty. Poprzez ciągłe generowanie splątanych fotonów i przechowywaniu wyników pomiarów naukowcy zebrali w ciągu godziny około 100 milionów możliwych wyników zniknięcia stanu splątanego. Taka ilość danych pozwala na przeprowadzenie dowolnej rozgrywki w go. Uczeni, analizując rozkład zer i jedynek w czasie potwierdzili, że nie występuje znacząca korelacja pomiędzy następującymi po sobie danymi. Tym samym, dane są rzeczywiście rozłożone losowo. Jin mówi, że rzeczywista złożoność i poziom trudności kwantowego go pozostają kwestią otwartą. Jednak, zwiększając rozmiary wirtualnej planszy i włączając do tego splątanie, można – jego zdaniem – zwiększyć trudność samej gry do takiego stopnia, by dorównywała ona takim grom jak mahjong, gdzie większość informacji jest ukrytych. Dzięki temu kwantowe go może stać się obiecującą platformą do testowania nowych algorytmów sztucznej inteligencji. « powrót do artykułu
  2. Eksperci wygenerowali i zmierzyli splątanie kwantowe na pokładzie satelity CubeSat. To kluczowy krok w kierunku globalnej kwantowej sieci komunikacyjnej. W przyszłości nasz system może być częścią globalnego kwantowego systemu przesyłania sygnałów kwantowych do odbiorników na Ziemi lub na pokładzie innych urządzeń znajdujących się w przestrzeni kosmicznej, mówi główny autor badań, Aitor Villar z Centrum Technologii Kwantowych Narodowego Uniwersytetu Singapuru. Villar dodaje, że sygnały te mogą być używane do dowolnego rodzaju komunikacji kwantowej, od kwantowej dystrybucji klucza na potrzeby superbezpiecznej komunikacji, po kwantową teleportację, gdzie informacja jest przesyłana poprzez replikację na odległość stanu systemu kwantowego. Villar i współpracująca z nim grupa międzynaodowych specjalistów opisali na łamach magazynu Optica, jak stworzone przez nich miniaturowe urządzenie, w którym dokonywane jest splątanie kwantowe, pracuje na pokładzie miniaturowych satelitów CubeSat. Urządzenia te to nanosatelity o wymiarach około 10x10x10 centymetrów. Są niewielkie i lekkie, a więc ani ich budowa, ani wniesienie na orbitę nie wiążą się z tak gigantycznymi kosztami jak w przypadku pełnowymiarowych satelitów. Wykorzystanie splątania kwantowego daje nadzieję na sueprbezpieczną komunikację. Problem jednak w tym, że – przynajmniej obecnie – nie jest możliwe stworzenie globalnej sieci kwantowej komunikacji opartej na światłowodach. Dochodzi w nich bowiem do dużych strat sygnału. Problem mogłyby rozwiązać kwantowe wzmacniacze, ale... takie jeszcze nie istnieją. O związanych z tym problemach wspominaliśmy w tekście Polak pomógł w osiągnięciu rekordowych 1120 km dla zabezpieczonej splątaniem kwantowym QKD. Problemy te mogłaby rozwiązać flota miniaturowych satelitów, wyposażonych w odpowiednie urządzenie. I właśnie tym zajęli się naukowcy z grupy Villara. W pierwszym etapie swoich badań musieli udowodnić, że miniaturowe źródło fotonów wykorzystywane do osiągnięcia splątania jest w stanie przetrwać start rakiety z satelitą na pokładzie, a następnie będzie bez zakłóceń pracowało w przestrzeni kosmicznej. Najpierw przez długi czas prowadzili prace nad opowiednim urządzeniem. Na każdym kolejnym etapie musieli pamiętać o niewielkich rozmiarach oraz kosztach CubeSat. W końcu powstało niewielkie, wytrzymałe urządzenie zbudowane z ogólnodostępnych podzespołów. Składa się ono z niebieskiej diody laserowej, której światło skierowane jest na nieliniowe kryształy, dzięki czemu powstają pary splątanych fotonów. Później urządzenie poddano wibracjom oraz zmianom temperatury, spodziewanym podczas startu rakiety oraz pracy w przestrzeni kosmicznej. Testom poddano też same kryształy. Wykazały one, że kryształy zachowują swoje pozycje pomimo wielokrotnych wahań temperatur pomiędzy -10 a +40 stopni Celsjusza. W końcu nowy instrument został umieszczony w CubeSat o nazwie SpooQy-1 i wysłany na Międzynarodową Stację Kosmiczną. Dnia 17 czerwca wypuszczono go z MSK i trafił na orbitę. Przeprowadzone właśnie eksperymenty wykazały, że generuje on pary fotonów w temperaturach od 16 do 21,5 stopni Celsjusza. Eksperyment ten pokazuje, że ta zminiaturyzowana technologia generuje splątanie pobierając przy tym niewiele energii. To bardzo ważny krok w kierunku budowy sieci tanich satelitów tworzących globalną sieć komunikacji kwantowej, mówi Villar. Obecnie naukowcy współpracują z brytyjską firmą RALSpace. Ich celem jest stworzenie nanosatelity podobnego do SpooQy-1, który będzie w stanie wysłać parę splątanych fotonów z orbity do naziemnego odbiornika. Test takiego systemu zaplanowano na 2022 rok. « powrót do artykułu
×
×
  • Create New...