Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' sadza' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 2 wyniki

  1. Cement i sadza, dwa materiały używane przez ludzkość od tysiącleci, mogą tworzyć podstawę nowoczesnych technologii. Ich odpowiednie połączenie pozwala bowiem na stworzenie... taniego systemu przechowywania energii. Wyobraźmy sobie budynek, w którego fundamentach przechowywana jest energia z umieszczonych na dachu paneli słonecznych, mówią naukowcy z MIT. To właśnie oni stworzyli nowy materiał, który w przyszłości może np. bezprzewodowo ładować samochód elektryczny poruszający się po drodze. Franz-Josef Ulm, Admin Masic, Yang-Shao Horn oraz czworo innych uczonych z MIT i Wyss Institute for Biologically Inspired Engineering, stworzyli superkondensator z cementu i sadzy, który opisali na łamach PNAS. Kondensatory to proste urządzenia złożone z dwóch przewodzących płytek zanurzonych w elektrolicie i przedzielonych membraną. Gdy przyłożymy do kondensatora napięcie, dodatnio naładowane jony z elektrolitu zgromadzą się na ujemnie naładowanej płytce, a jony o ładunku ujemnym przylgną do płytki o ładunku dodatnim. Membrana pomiędzy płytkami uniemożliwia migrację jonów, powstaje pole elektryczne pomiędzy płytkami i kondensator jest naładowany. Urządzenie jest w stanie przechowywać energię przez długi czas i bardzo szybko ją uwolnić w razie potrzeby. Superkondensator to kondesator zdolny do przechowywania wyjątkowo dużej ilości ładunków. Pojemność kondensatora zależy od całkowitej powierzchni płytek. W przypadku połączenia cementu i sadzy kluczem do sukcesu było uzyskanie niezwykle dużej powierzchni materiału przewodzącego wewnątrz betonowego bloku. Naukowcy uzyskali to łącząc sadzę, która bardzo dobrze przewodzi prąd, z mieszanką cementową i wodą. Woda, reagując z cementem, w sposób naturalny tworzy sieć kanalików. Sadza migruje przez te kanaliki, tworząc sieć w zastygniętym betonowym bloku. Ma ona strukturę fraktalną. Z większy ramion sieci wyrastają mniejsze, a z nich jeszcze mniejsze i tak dalej. W ten sposób w niewielkiej objętości powstaje sieć materiału przewodzącego o bardzo dużej powierzchni. Wypełniliśmy tym materiałem plastikowe tuby i pozostawiliśmy go do zastygnięcia na co najmniej 28 dni. Później pocięliśmy beton na fragmenty wielkości elektrod, każdą z nich zanurzyliśmy w standardowym elektrolicie (chlorku potasu) i z dwóch elektrod oddzielonych membraną składaliśmy superkondensatory, mówi profesor Ulm. Z obliczeń wynika, że betonowy blok o objętości 45 m3 wykonany z takiego materiału może przechować około 10 kWh energii. To mniej więcej tyle, ile zużywa w ciągu dnia typowe gospodarstwo domowe. Innymi słowy, domek jednorodzinny posadowiony na fundamentach o objętości 45 m3 zyskiwałby system przechowywania energii na cały dzień. To w znacznym stopniu uniezależniłoby gospodarstwo wyposażone w panele słoneczne od zewnętrznych dostawców energii. Nowy materiał mógłby potencjalnie znaleźć też zastosowanie do budowy dróg czy parkingów. Przechowywana w nim energia mogłaby służyć do bezprzewodowego ładowania samochodów elektrycznych. To jednak jeszcze bardziej odległa wizja, niż przechowywanie energii w fundamentach budynków. Olbrzymią zaletą tego systemu jest jego niezwykła skalowalność. W ten sposób można tworzyć zarówno elektrody o grubości 1 mm, jak i 1 metra. Wszystko zależy od tego, jak dużo energii chcemy przechowywać. Co więcej, stosując różne mieszanki można odpowiednio dostosowywać właściwości naszego superkondensatora. W przypadku dróg czy parkingów ładujących samochody elektryczne konieczne byłoby bardzo szybkie ładowanie i rozładowywanie. W przypadku domów proces ładowania i rozładowywania fundamentów może przebiegać znacznie wolniej. W tej chwili naukowcy skupiają się na zbudowaniu betonowego bloku zdolnego do przechowania takiej samej ilości energii, co standardowe akumulatory samochodowe. Superkondensatory nie mają możliwości przechowywania tak dużej ilości energii, co standardowe akumulatory. Mają jednak wiele innych zalet. Można je bardzo szybko ładować i rozładowywać i wytrzymują miliony cykli pracy. Ponadto, w przeciwieństwie do akumulatorów, przechowują energię nie w postaci chemicznej, a w postaci pola elektrycznego. « powrót do artykułu
  2. Silniki Diesla bardzo zanieczyszczają powietrze. Emitują olbrzymie ilości szkodliwych substancji, takich jak tlenki azotu czy sadza. Afera z fałszowaniem przez Volkswagena danych dotyczących emisji pokazała, że niektóre modele takich silników nawet 40-krotnie przekraczają dopuszczalne normy emisji. Coraz częściej pojawiały się twierdzenia, że ten typ silnika jest zbyt szkodliwy dla ludzkiego zdrowia i dla środowiska, by nadal go stosować. Nie jesteśmy jednak w stanie zrezygnować z diesli w najbliższym czasie. Są one mocne, trwałe, energooszczędne, a przede wszystkim mają wysoką wartość momentu obrotowego, co ma olbrzymie znaczenie przy transporcie dużych ciężarów. To dlatego diesle spotykamy w milionach ciężarówek, pociągów, statków czy maszynach budowlanych i generatorach prądu. Charles Mueller, specjalizujący się w procesach spalania naukowiec z Sandia National Laboratories, uważa, że znalazł sposób na spowodowanie, by silniki Diesla były znacznie bardziej czyste niż obecnie. Swoją technologię nazwał ducted fuel injection (DFI) i przyznaje, że zainspirowały go szkolne palniki Bunsena, gdzie do reakcji dochodzi w dyszy, do której zasysane jest powietrze. W silnikach benzynowych zapłon paliwa powodowany jest przez iskrę. Jednak w silnikach Diesla do zapłonu dochodzi nie z powodu iskry, a wysokiego ciśnienia wytwarzanego w cylindrze. Najpierw miniaturowe krople paliwa wpadają do cylindra z olbrzymią prędkością, mieszają się tam z powietrzem, cylinder wytwarza wysokie ciśnienie i temperaturę, przez co dochodzi do samozapłonu. To proces bardziej wydajny niż w silnikach benzynowych, ale wiąże się on m.in. z emisją toksycznych tlenków azotu. W typowych scenariuszach można minimalizować tę emisję ponownie kierując do silnika gazy ze spalania z poprzedniego cyklu pracy. Metoda ta obniża temperaturę i koncentrację tlenu w mieszaninie paliwowo-powietrznej, co prowadzi do redukcji emisji tlenków azotu. Jednak nie ma róży bez kolców. Niższa temperatura spalania oznacza mniej dokładne spalanie i produkcję większej ilości szkodliwej sadzy. Jeśli z palnika Bunsena odkręcisz dyszę i zapalisz gaz, otrzymasz dymiący pomarańczowy płomień. Zgaś gaz, przykręć dyszę i ponownie zapal gaz. Teraz masz ładny niebieski płomień. Ma on taki kolor, gdyż nie zawiera sadzy, mówi Mueller. Uczony zaczął się zastanawiać, czy takiego rozwiązania nie można zastosować w silnikach i wraz z Christopherem Nilsenem, Drummondem Bilesem oraz Nathanem Harry rozpoczęli eksperymenty z umieszczaniem 4–6 dysz w silniku. Miałyby one działać jako wtryskiwacze paliwa. Uczony zauważa, że obecnie stosowane wtryskiwacze dostarczają do silnika 2–10 razy więcej paliwa niż jest potrzebne do jego całkowitego spalenia. Gdy przy wysokiej temperaturze masz taki nadmiar paliwa, powstaje dużo sadzy. Nasze dysze pozwalają na dwukrotne zmniejszenie ilości sadzy, a nawet na jej całkowite wyeliminowanie, gdyż dostarczana przez nie mieszanka zawiera znacznie mniej paliwa, mówi Mueller. Uczonym z Sandii udało się w ten sposób rozwiązać jednocześnie dwa problemy – eliminują sadzę i pozwalają na stosowanie technik redukcji tlenków azotu bez ryzyka pojawienia się większej ilości sadzy. Teraz, gdy usunęliśmy sadzę, zlikwidowaliśmy problem bilansu sadzy i tlenków azotu. Możemy więc pozbyć się tlenków azotu bez powodowania, że sadza stanie się problemem, cieszy się naukowiec. Mueller mówi, że podczas eksperymentów jego zespół zaobserwował jednoczesną redukcję emisji sadzy i tlenków azotu o wiele rzędów wielkości. To jeszcze nie koniec korzyści. DFI świetnie działa z konwencjonalnym paliwem dla silników Diesla, ale działa jeszcze lepiej z paliwami zawierającymi dodatkowe atomy tlenu. Wiele paliw odnawialnych to paliwa dodatkowo utlenione. Wykorzystanie takich paliw z technologią DFI zmniejszy emisję na tyle, że możliwe będzie zastosowanie tańszych silników, gdyż wymagało to będzie mniej intensywnego oczyszczania spalin. W nowoczesnych ciężarówkach koszt systemu oczyszczania spalin, liczony łącznie jako koszt jego zakupu oraz eksploatacji, to około 12 000 dolarów w czasie całego życia pojazdu. Jeśli obniżymy ten koszt tylko o jakąś część, to – biorąc pod uwagę olbrzymią liczbę ciężarówek i ich znaczenie dla gospodarki – zyskamy olbrzymie oszczędności, wyjaśnia Mueller. Nową technologią już zainteresował się przemysł motoryzacyjny. Jest ona bowiem tania, prosta, a jej zastosowanie nie wymaga wprowadzania znaczących zmian w obecnie stosowanych silnikach. « powrót do artykułu
×
×
  • Dodaj nową pozycję...