Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' rzeka'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 2 results

  1. Jednym ze sposobów na pozyskiwanie odnawialnej energii jest wykorzystanie różnicy chemicznych pomiędzy słodką i słoną wodą. Jeśli naukowcom uda się opracować metodę skalowania stworzonej przez siebie technologii, będą mogli dostarczyć olbrzymią ilość energii milionom ludzi mieszkających w okolica ujścia rzek do mórz i oceanów. Każdego roku rzeki na całym świecie zrzucają do oceanów około 37 000 km3 wody. Teoretycznie można tutaj pozyskać 2,6 terawata, czyli mniej więcej tyle, ile wynosi produkcja 2000 elektrowni atomowych. Istnieje kilka metod generowania energii z różnicy pomiędzy słodką a słoną wodą. Wszystkie one korzystają z faktu, że sole złożone są z jonów. W ciałach stałych ładunki dodatnie i ujemne przyciągają się i łączą. Na przykład sól stołowa złożona jest z dodatnio naładowanych jonów sodu połączonych z ujemnie naładowanymi jonami chloru. W wodzie jony takie mogą się od siebie odłączać i poruszać niezależnie. Jeśli po dwóch stronach półprzepuszczalnej membrany umieścimy wodę z dodatnio i ujemnie naładowanymi jonami, elektrony będą przemieszczały się od części ujemnie naładowanej do części ze znakiem dodatnim. Uzyskamy w ten sposób prąd. W 2013 roku francuscy naukowcy wykorzystali ceramiczną błonę z azotku krzemu, w którym nawiercili otwór, a w jego wnętrzu umieścili nanorurkę borowo-azotkową (BNNT). Nanorurki te mają silny ujemny ładunek, dlatego też Francuzi sądzili, że ujemnie naładowane jony nie przenikną przez otwór. Mieli rację. Gdy po obu stronach błony umieszczono słoną i słodką wodę, przez otwór przemieszczały się niemal wyłącznie jony dodatnie. Nierównowaga ładunków po obu stronach membrany była tak duża, że naukowcy obliczyli, iż jeden metr kwadratowy membrany, zawierający miliony otworów na cm2 wygeneruje 30 MWh/rok. To wystarczy, by zasilić nawet 12 polskich gospodarstw domowych. Problem jednak w tym, że wówczas stworzenie nawet niewielkiej membrany tego typu było niemożliwe. Nikt bowiem nie wiedział, w jaki sposób ułożyć długie nanorurki borowo-azotkowe prostopadle do membrany. Przed kilkoma dniami, podczas spotkania Materials Research Society wystąpił Semih Cetindag, doktorant w laboratorium Jerry'ego Wei-Jena na Rutgers University i poinformował, że jego zespołowi udało się opracować odpowiednią technologię. Nanorurki można kupić na rynku. Następnie naukowcy dodają je do polimerowego prekursora, który jest nanoszony na membranę o grubości 6,5 mikrometrów. Naukowcy chcieli wykorzystać pole magnetyczne do odpowiedniego ustawienia nanorurek, jednak BNNT nie mają właściwości magnetycznych. Cetindag i jego zespół pokryli więc ujemnie naładowane nanorurki powłoką o ładunku dodatnim. Wykorzystane w tym celu molekuły są zbyt duże, by zmieścić się wewnątrz nanorurek, zatem BNNT pozostają otwarte. Następnie do całości dodano ujemnie naładowane cząstki tlenku żelaza, które przyczepiły się do pokrycia nanorurek. Gdy w obecności tak przygotowanych BNNT włączono pole magnetyczne, można było manewrować nanorurkami znajdującymi się w polimerowym prekursorze nałożonym na membranę.  Później za pomocą światła UV polimer został utwardzony. Na koniec za pomocą strumienia plazmy zdjęto z obu stron membrany cienką warstwę, by upewnić się, że nanorurki są z obu końców otwarte. W ten sposób uzyskano membranę z 10 milionami BNNT na każdy centymetr kwadratowy. Gdy taką membranę umieszczono następnie pomiędzy słoną a słodką wodą, uzyskano 8000 razy więcej mocy na daną powierzchnię niż podczas eksperymentów prowadzonych przez Francuzów. Shan mówi, że tak wielki przyrost mocy może wynikać z faktu, że jego zespół wykorzystał węższe nanorurki, zatem mogły one lepiej segregować ujemnie naładowane jony. Co więcej, uczeni sądzą, że membrana może działać jeszcze lepiej. Nie wykorzystaliśmy jej pełnego potencjału. W rzeczywistości tylko 2% BNNT jest otwartych z obu stron, mówi Cetindag. Naukowcy pracują teraz nad zwiększeniem odsetka nanorurek otwartych z obu stron membrany. « powrót do artykułu
  2. Rzeki i jeziora zajmują zaledwie 1% powierzchni Ziemi, ale są domem dla 30% gatunków ziemskich kręgowców. Należą jednocześnie do jednych z najbardziej zagrożonych ekosystemów. Naukowcy z Instytutu Ekologii Wód Słodkich i Rybołówstwa Śródlądowego im. Leibnitza przeprowadzili badania dotyczące spadku liczebności dużych gatunków słodkowodnych. Okazało się, że w latach 1970–2012 liczebność światowej populacji słodkowodnej megafauny kręgowców zmniejszyła się o 88%. To dwukrotnie większy spadek niż w przypadku gatunków lądowych i morskich. Najbardziej narażone są duże ryby. Słodkowodna megafauna to żyjące w wodach słodkich zwierzęta, których waga przekracza 30 kilogramów. Należą do nich np. delfiny, bobry, krokodyle, żółwie czy jesiotrowate. Naukowcy zebrali wszelkie możliwe dane dotyczące 126 gatunków światowej megafauny oraz określili historyczny i obecny zasięg dla 44 gatunków Europy i USA. Uzyskane wyniki są alarmujące, mówi Sonja Jähing, jedna z głównych autorów studium. W latach 1970–2012 liczebność słodkowodnej megafauny zmniejszyła się o 88%. Do największych spadków doszło w krainie orientalnej (obejmującej południe Azji, od granicy Pakistanu z Iranem poprzez Indie, Azję Południwo-Wschodnią, Archipelag Malajski i południe Chin), gdzie zanotowano 99-procentowy spadek oraz w krainie paleoarktycznej (spadek o 97%), która obejmuje obrzymi obszar od Azorów, Wysp Kanaryjskich, Wysp Zielonego Przylądka, poprzez Afrykę powyżej zwrotnika Raka, północną część półwyspu Arabskiego, całą Europę, Rosję i kraje byłego ZSRR, Iran, Afganistan, część Pakistanu, Mongolię, środkowe i północne Chiny, obie Koree i Japonię. Najbardziej zmniejszyła się liczebność wielkich ryb, jak jesiotrowate, łososiowate i sumokształtne. Tutaj zanotowano spadki o 94%. Następne na liście najbardziej zagrożonych są gady (spadki o 72%). Główną przyczyną spadki liczebności światowej megafauny jest nadmierna ich eksploatacja przez człowieka. Zwierzęta te są zabijane dla mięsa, skór, ludzie wybierają tez ich jaja. Ponadto za spadek liczebności dużych gatunków ryb można też obwiniać coraz mniejszą liczbę swobodnie płynących rzek. Budowane przez człowieka zapory uniemożliwiają rybom dotarcie do miejsc rozrodu i żerowania. Pomimo tego, że wielkie światowe rzeki już są mocno pofragmentowane, to ludzie planują wybudowanie na nich kolejnych 3700 dużych zapór. Ponad 800 z nich powstanie w miejscach największej bioróżnorodności megafauny, w tym w basenach Amazonki, Kongo, Mekongu i Gangesu, ostrzega główny autor badań Fengzhi He. Na szczęście mamy też przykłady udanych działań na rzecz ochrony słodkowodnej megafuny. W USA populacja 13 takich gatunków, w tym jesiotra zielonego i bobra kanadyjskiego jest stabilna lub nawet rośnie. W Azji po raz pierwszy od 20 lat zanotowano wzrost populacji oreczki krótkogłowej zamieszkującej basen Mekongu. E W wielu regionach Europy udało się przywrócić populację bobra, a obecnie trwają wysiłki na rzecz reintrodukcji jesiotra zachodniego i jesiotra bałtyckiego w europejskich rzekach. Zagrożona wyginięciem jest ponad połowa gatunków słodkowodnej megafauny objętej niniejszym badaniem. « powrót do artykułu
×
×
  • Create New...