Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' pulsar' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 4 wyniki

  1. W marcu teleskop kosmiczny Swift zauważył impuls radiowy pochodzący z Drogi Mlecznej. W ciągu tygodnia okazało się, że nowym źródłem promieniowania rentgenowskiego – Swift J1818.0–1607 – jest magnetar. To rzadki typ wolno obracającej się gwiazdy neutronowej. Cechą charakterystyczną magnetarów są ich niezwykle silne pola magnetyczne, które należą do najsilniejszych we wszechświecie. Nowo odkryty obiekt porusza się z prędkością 1,4 obrotu na sekundę i jest najszybciej obracającym się magnetarem. Jest też prawdopodobnie jedną z najmłodszych gwiazd neutronowych w Drodze Mlecznej. Co więcej, okazało się, że emituje on impulsy radiowe podobne do tych emitowanych przez pulsary. To dopiero piąty znany nam magnetar, w którego przypadku stwierdzono taką emisję, co czyni Swift J1818.0–1607 wyjątkowo rzadkim znaleziskiem. Naukowcy z ARC Center of Excellence for Gravitational Wave Discovery (OzGrav) poinformowali właśnie, że impulsy z magnetara mają bardzo strome spektrum radiowe. Stają się znacznie słabsze, gdy przechodzimy od niskich do wysokich częstotliwości radiowych. Spektrum to jest nie tylko bardziej strome od pozostałych 4 magnetarów emitujących fale radiowe, ale też od 90% znanych nam pulsarów. Uczeni stwierdzili również, że w ciągu 2 tygodni magnetar stał się 10-krotnie jaśniejszy. Dla porównania, wszystkie pozostałe magnetary emitujące fale radiowe mają stałą jasność w tym zakresie. Kolejne analizy wykazały, że badany magnetar ma wiele podobnych właściwości do pulsara PSR J1119–6127. W 2016 roku zarejestrowano podobny do magnetarów rozbłysk tego pulsara. Wówczas doświadczył on gwałtownego wzrostu jasności i pojawiło się u niego strome spektrum radiowe. Jeśli rozbłysk pulsara i Swift J1818.0–1607 ma takie samo źródło, to z czasem badany magnetar powinien zyskać podobne spektrum, jak inne magnetary radiowe. Jak już wspomnieliśmy, Swift J1818.0–1607 jest jedną z najmłodszych gwiazd neutronowych. Naukowcy szacują jego wiek na 240–320 lat. Główny autor badań, Marcus Lower, zaproponował wyjaśnienie niezwykłych właściwości gwiazdy. Swift J1818.0–1607 mogła rozpocząć życie jako zwykły pulsar. Z czasem tempo jego obrotu mogło stać się podobne do tempa obrotu magnetara. Mogło się tak stać, jeśli biegun magnetyczny i biegun obrotu gwiazdy neutronowej szybko się wyrównają lub gdy materiał z supernowej opadnie na gwiazdę neutronową. O niezwykłej gwieździe można przeczytać na łamach Astrophysical Journal Letters. « powrót do artykułu
  2. Pulsary to szybko obracające się obiekty, które mieszczą nawet ponad 140% masy Słońca w kuli o średnicy zaledwie 20 kilometrów. Mają one niezwykle silne pole magnetyczne i emitują fale radiowe na każdym z biegunów magnetycznych. Jako, że ich rotacja jest niezwykle stabilna, impulsy z wirujących pulsarów docierają do Ziemi z regularnością zegara atomowego. Olbrzymia masa, niewielkie rozmiary i precyzja zegara atomowego to cechy, dzięki którym naukowcy mogą wykorzystać pulsary do testowania ogólnej teorii względności Einsteina. Teoria ta przewiduje, że czasoprzestrzeń jest zaginana w pobliżu masywnych obiektów. Jednym z teoretycznie przewidywanych skutków takiego zagięcia czasoprzestrzeni jest jej wpływ na precesję pulsarów w układzie podwójnym. Wpływ ten bierze się z przesunięcia wektorów wirujących pulsarów w stosunku do całkowitego wektora momentu obrotowego układu podwójnego. Prawdopodobnie przyczyna tkwi w asymetrycznej eksplozji supernowych. Powstają w ten sposób zaburzenia precesji, które możemy obserwować, testować i sprawdzać, czy zgadzają się one ze zjawiskami opisanymi przez teorię Einseina. Naukowcy z Instytutu Radioastronomii im. Maxa Plancka poinformowali właśnie o wieloletnich wynikach obserwacji pulsaru PSR J1906+0746. Gdy obiekt ten został odkryty w 2004 roku wyglądał jak każdy inny pulsar. Można było obserwować dwa spolaryzowane impulsy wysyłane z obu biegunów przy każdym obrocie. Gdy jednak naukowcy kilka miesięcy po odkryciu przyjrzeli się mu po raz drugi okazało się, że do Ziemi dociera tylko jeden impuls. Rozpoczęto więc badania, które trwały od roku 2004 do 2018, a które prowadził zespół Gregory'ego Desvignesa. Okazało się, że zniknięcie jednego z sygnałów było związane z precesją pulsaru. PSR J1906+0746 wykonuje pełen obrót co 144 milisekundy, a co 4 godziny obiega towarzyszący mu pulsar. Niemieccy badacze zauważyli, że początkowo przy każdym obrocie do Ziemi docierały dwa impulsy „północny” i „południowy”. Z czasem impuls „północny” zanikł. Szczegółowe badania polaryzacji impulsów pozwoliły naukowcom na stworzenie modelu, który prognozuje właściwości docierających do Ziemi impulsów na przestrzeni najbliższych 50 lat. Gdy model, oparty na ogólnej teorii względności Einsteina, porównano z danymi obserwacyjnymi, okazało się, że wszystko idealnie do siebie pasuje, a oparte na nim przewidywania są obarczone mniejszym błędem niż te opierające się na obecnym modelu referencyjnym. Wszystko zaś zgadza się z przewidywaniami Einsteina. Pulsary pozwalają nam badać grawitację w unikatowy sposób. To piękny przykład takich badań, mówi Ingrid Stairs z University of British Columbia. Opracowany model pozwala też przewidzieć pojawiania się i zanikanie „północnego” i „południowego” impulsu z PSR J1906+0746. Impuls „południowy” zniknie nam z pola widzenia około roku 2028 i będzie widoczny ponownie w latach 2070–2090. Z kolei impuls „północny” będzie można obserwować w latach 2085–2105. PSR J1906+0746 znajduje się w odległości 25 000 lat świetlnych od Ziemi, w Gwiazdozbiorze Orła. « powrót do artykułu
  3. Astronomowie odkryli gwiazdę, która porusza się z prędkością 4 000 000 km/h i jak się wydaje, została przyspieszona przez pobliską supernową. Dzięki jej wąskiemu ogonowi oraz temu, że możemy obserwować ją pod odpowiednim kątem, wyśledziliśmy miejsce narodzin tej gwiazdy, mówi Frank Schinzel z National Radio Astronomy Observatory w Nowym Meksyku. Pulsar jest obserwowany za pomocą Fermi Gamma-ray Space Telescope oraz Karl G. Jansky Very Large Array w Nowym Meksyku. Pulsary to bardzo szybko obracające się gwiazdy neutronowe, jądra wielkich gwiazd, które się zapadły. Ten obecny, PSR J0002+6216 został po raz pierwszy zauważony w 2017 roku. Schinzel i jego koledzy zabrali się wówczas za analizę danych z okresu 10 lat i obliczyli z jaką prędkością i w jakim kierunku pulsar się przemieszcza. J0002 jest odległy od Ziemi o 6500 lat świetlnych i znajduje się w odległości 53 lat świetlnych od pozostałości supernowej CTB 1. Za nim ciągnie się długi na 13 lat świetlnych ogon energii magnetycznej i cząstek, który wskazuje dokładnie na CTB 1. Przed około 10 000 lat doszło do wybuchu supernowej, której pozostałościami jest CTB 1. Eksplozja wyrzuciła w przestrzeń J0002. Według dostępnych danych gwiazda porusza się szybciej niż 99% znanych pulsarów. Prędkość przeciętnego pulsara jest 5-krotnie mniejsza. Ma wystarczająca prędkość, by opuścić naszą galaktykę. « powrót do artykułu
  4. Naukowcy z Instytut Radioastronomii im. Maxa Plancka w Bonn zaproponowali nowy eksperyment, dzięki któremu mamy dowiedzieć się więcej na temat interakcji pomiędzy ciemną materią, a materią. Ich propozycja została opublikowana na łamach Physical Review Letters. Przed około 400 laty Galileusz stwierdził, że w polu grawitacyjnym ziemi wszystkie ciała doświadczają takiego samego spadku swobodnego. Niedawno przeprowadzony eksperyment z użyciem satelity potwierdził uniwersalność swobodnego spadku w polu grawitacyjnym Ziemi z dokładnością 1:100 bilionów. Takie eksperymenty pozwalają jednak przetestować tylko uniwersalność zasady swobodnego spadku w odniesieniu do materii. Tymczasem zwykła materia stanowi niewielką część materii wszechświat. Jako, że nie znamy natury ciemnej materii, nie wiemy w jaki sposób może ona oddziaływać z materią, jakie siły wchodzą tutaj w rachubę. Czy interakcja pomiędzy materią a ciemną materią odbywa się za pomocą czterech znanych rodzajów oddziaływań podstawowych (grawitacyjne, elektromagnetyczne, silne, słabe) czy też mamy tu do czynienia z hipotetycznym dodatkowym oddziaływaniem, nazwanym „piątą siłą”. Naukowcy z Bonn proponują zweryfikowanie istnienia „piątej siły” za pomocą gwiazdy neutronowej. Są dwa powody, dla których pulsar w układzie podwójnym pozwala na przeprowadzenie nowatorskich badań oddziaływania pomiędzy materią a ciemną materią. Po pierwsze, gwiazda neutronowa składa się z materii, której nie możemy odtworzyć w laboratorium. Jest ona wielokrotnie bardziej gęsta niż jądro atomowe, złożona niemal w całości z neutronów. Ponadto niezwykle silne pola grawitacyjne wewnątrz gwiazdy neutronowej, miliard razy silniejsze niż pole grawitacyjne Słońca, może znakomicie wzmacniać interakcje z ciemną materią, mówi Lijing Shao z Instytutu im. Maxa Plancka. Orbity pulsarów w układach podwójnych można precyzyjnie mierzyć. W niektórych przypadkach znamy orbitę takiej gwiazdy z dokładnością większą niż 30 metrów. Zespół naukowy z Bonn postanowił przetestować swój pomysł wykorzystując w tym celu pulsar PSR J1713+0740 oddalony od Ziemi o około 3800 lat świetlnych. To jeden z najbardziej stabilnych znanych nam pulsarów. Pojedynczy obrót wokół własnej osi zajmuje mu 4,6 milisekundy, a sam pulsar krąży wokół białego karła po niemal kołowej orbicie o okresie 68 dni. To dobry obiekt do badań, gdyż im większa orbita, tym bardziej ciemna materia powinna ją zakłócać. Jeśli swobody spadek w polu grawitacyjnym ciemnej materii jest inny niż w polu grawitacyjnym białego karła (materia), to z czasem powinno dochodzić do deformacji orbity pulsara. Przez ponad 20 lat precyzyjnych pomiarów prowadzonych za pomocą teleskopu Effelsber i innych radioteleskopów, wykazano, że nie dochodzi do zmian orbity. A to z dużym prawdopodobieństwem oznacza, że pulsar jest w ten sam sposób przyciągany do ciemnej materii co do materii, stwierdził Norbert Wex. Naukowcy uważają, że jeszcze lepsze badania można przeprowadzić w miejscach gdzie, jak się przypuszcza, występuje dużo ciemnej materii. "Idealnym miejscem jest centrum galaktyki, które obserwujemy w ramach projektu Black Hole Cam. Gdy uruchomiony zostanie teleskop Square Kilometre Array będziemy mogli przeprowadzić niezwykle precyzyjne testy", mówi Michael Kramer. « powrót do artykułu
×
×
  • Dodaj nową pozycję...