Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' mammografia'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 2 results

  1. Porównanie trzech komercyjnych systemów sztucznej inteligencji wykorzystywanej w diagnostyce obrazowej raka piersi wykazało, że najlepszy z nich sprawuje się równie dobrze jak lekarz-radiolog. Algorytmy badano za pomocą niemal 9000 obrazów z aparatów mammograficznych, które zgromadzono w czasie rutynowych badań przesiewowych w Szwecji. Badania przesiewowe obejmujące dużą część populacji znacząco zmniejszają umieralność na nowotwory piersi, gdyż pozwalają na wyłapanie wielu przypadków na wczesnym etapie rozwoju choroby. W wielu takich przedsięwzięciach każde zdjęcie jest niezależnie oceniane przez dwóch radiologów, co zwiększa skuteczność całego programu. To jednak metoda kosztowna, długotrwała, wymagająca odpowiednich zasobów. Tutaj mogłyby pomóc systemy SI, o ile będą dobrze sobie radziły z tym zadaniem. Chcieliśmy sprawdzić, na ile dobre są algorytmy SI w rozpoznawaniu obrazów mammograficznych. Pracuję w wydziale radiologii piersi i słyszałem o wielu firmach oferujących takie algorytmy. Jednak trudno było orzec, jaka jest ich jakość, mówi Fridrik Strand z Karolinska Institutet. Każdy z badanych algorytmów to odmiana sieci neuronowej. Każdy miał do przeanalizowania zdjęcia piersi 739 kobiet, u których w czasie krótszym niż 12 miesięcy od pierwotnego badania wykryto raka piersi oraz zdjęcia 8066 kobiet, u których w czasie 24 miesięcy od pierwotnego badania nie wykryto raka piersi. Każdy z algorytmów miał ocenić zdjęcie w skali od 0 do 1, gdzie 1 oznaczało pewność, iż na zdjęciu widać nieprawidłową tkankę. Trzy systemy, oznaczone jako AI-1, AI-2 oraz AI-3 osiągnęły czułość rzędu 81,9%, 67,0% oraz 67,4%. Dla porównania, czułość w przypadku radiologów jako pierwszych interpretujących dany obraz wynosiła 77,4%, a w przypadku radiologów, którzy jako drudzy dokonywali opisu było to 80,1%. Najlepszy z algorytmów potrafił wykryć też przypadki, które radiolodzy przeoczyli przy badaniach przesiewowych, a kobiety zostały w czasie krótszym niż rok zdiagnozowane jako chore. Badania te dowodzą, że algorytmy sztucznej inteligencji pomagają skorygować fałszywe negatywne diagnozy postawione przez lekarzy-radiologów. Połączenie możliwości AI-1 z przeciętnym lekarzem-radiologiem zwiększało liczbę wykrytych nowotworów piersi o 8%. Zespół z Karolinska Institutet spodziewa się, że jakość algorytmów SI będzie rosła. Nie wiem, jak efektywne mogą się stać, ale wiem, że istnieje kilka sposobów, by je udoskonalić. Jednym z nich może być np. ocenianie wszystkich 4 zdjęć jako całości, by można było porównać obrazy z obu piersi. Inny sposób to porównanie nowych zdjęć z tymi, wykonanymi wcześniej, by wyłapać zmiany, mówi Strand. Pełny opis eksperymentu opublikowano na łamach JAMA Oncology. « powrót do artykułu
  2. Marcin Sieniek, Scott Mayer McKinney, Shravya Shetty i inni badacze z Google Health opublikowali na łamach Nature artykuł, w którym dowodzą, że opracowany przez nich algorytm sztucznej inteligencji lepiej wykrywa raka piersi niż lekarze. Nowotwory piersi, pomimo szeroko zakrojonych programów badań, wciąż pozostają drugą głównych przyczyn zgonów na nowotwory wśród kobiet. Każdego roku na całym świecie wykonuje się dziesiątki milionów badań obrazowych, ale problemem wciąż pozostaje zbyt wysoki odsetek diagnoz fałszywych pozytywnych i fałszywych negatywnych. To z jednej strony naraża zdrowe osoby na stres i szkodliwe leczenie, a z drugiej – w przypadku osób chorych – opóźnia podjęcie leczenia, co często niesie ze sobą tragiczne skutki. Umiejętności lekarzy w zakresie interpretacji badań obrazowych znacznie się od siebie różnią i nawet w wiodących ośrodkach medycznych istnieje spore pole do poprawy. Z problemem tym mogłyby poradzić sobie algorytmy sztucznej inteligencji, które już wcześniej wielokrotnie wykazywały swoją przewagę nad lekarzami. Wspomniany algorytm wykorzystuje techniki głębokiego uczenia się. Najpierw go trenowano, a następnie poddano testom na nowym zestawie danych, których nie wykorzystywano podczas treningu. W testach wykorzystano dane dotyczące dwóch grup pacjentek. Jedna z nich to mieszkanki Wielkiej Brytanii, które w latach 2012–2015 poddały się badaniom mammograficznym w jednym z dwóch centrów medycznych. Kobiety co trzy lata przechodziły badania mammograficzne. Do badań wylosowano 10% z nich. Naukowcy mieli więc tutaj do dyspozycji dane o 25 856 pacjentkach. Było wśród nich 785, które poddano biopsji i 414 u których zdiagnozowano nowotwór w ciągu 39 miesięcy od pierwszego badania. Drugą grupę stanowiło 3097 Amerykanek będących w latach 2001–2018 pacjentkami jednego z akademickich centrów medycznych. U 1511 z nich wykonano biopsje, a u 686 zdiagnozowano nowotwór w ciągu 27 miesięcy od badania. Losy wszystkich kobiet były śledzone przez wiele lat, zatem wiadomo było, które z pań ostatecznie zachorowały. Zadaniem sztucznej inteligencji było postawienie diagnoz na podstawie mammografii. Następnie wyniki uzyskane przez SI porównano z diagnozami lekarskimi. Okazało się, że sztuczna inteligencja radziła sobie znacznie lepiej. Liczba fałszywych pozytywnych diagnoz postawionych przez SI była o 5,7% niższa dla pacjentek z USA i o 1,2% niższa u pacjentek z Wielkiej Brytanii. SI postawiła też mniej fałszywych negatywnych diagnoz. Dla USA było to 9,4% mniej, a dla Wielkiej Brytanii – 2,7% mniej. Wyniki uzyskane przez sztuczną inteligencję były o tyle bardziej imponujące, że algorytm diagnozował wyłącznie na podstawie badań mammograficznych, podczas gdy lekarze mieli też do dyspozycji historię pacjenta. Teraz autorzy algorytmu będą próbowali wykorzystać go podczas badań klinicznych. Ich celem jest spowodowanie, by algorytm sztucznej inteligencji został dopuszczony do użycia w medycynie. « powrót do artykułu
×
×
  • Create New...