Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' ciepło' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 7 wyników

  1. Historia naszej planety, to historia 4,5 miliarda lat schładzania się. Dzięki temu, że Ziemia stygnie, uformowała się jej sztywna skorupa i mogło powstać życie. Jednocześnie dzięki temu, że nie wystygła, istnieją takie procesy jak tektonika płyt i wulkanizm. Gdy wnętrze planety wystygnie, te kluczowe procesy zatrzymają się. Nie wiemy jednak, jak szybko nasza planeta się wychładza i kiedy procesy przebiegające w jej wnętrzu zatrzymają się. Odpowiedzią na te pytania może dać zbadanie przewodnictwa cieplnego minerałów znajdujących się na granicy między jądrem a płaszczem Ziemi. To bardzo ważne miejsce, w którym lepkie skały mają bezpośredni kontakt z płynnym zbudowanym głównie z niklu i żelaza zewnętrznym jądrem. Gradient temperatury pomiędzy jądrem zewnętrznym a płaszczem jest bardzo duży, zatem potencjalnie może tam przepływać sporo ciepła. Warstwa graniczna zbudowana jest głownie z bridgmanitu. Profesor Motohiko Murakami ze Szwajcarskiego Instytutu Technologicznego w Zurichuy (ETH Zurich) wraz z naukowcami z Carnegie Institute for Science opracowali złożony system pomiarowy, który pozwolił im na wykonanie w laboratorium oceny przewodnictwa cieplnego bridgmanitu w warunkach ciśnienia i temperatury, jakie panują we wnętrzu Ziemi. Wykorzystali przy tym niedawno opracowaną technikę optycznego pomiaru absorpcji diamentu podgrzewanego impulsami laserowymi. Dzięki tej nowej technice wykazaliśmy, że przewodnictwo cieplne bridgmanitu jest około 1,5-razy większe niż się przyjmuje, mówi profesor Murakami. To zaś wskazuje, że przepływ ciepła pomiędzy jądrem a płaszczem jest większy. A większy przepływ ciepła oznacza, że konwekcja w płaszczu zachodzi szybciej i Ziemia szybciej się ochładza. Tektonika płyt może więc w rzeczywistości spowalniać szybciej, niż się obecnie przyjmuje. Grupa Murakami wykazała jednocześnie, że szybsze wychładzanie się płaszcza zmieni fazy minerałów na granicy jądra i płaszcza. Schładzający się bridgmanit zmieni się w minerał, który będzie jeszcze efektywniej przewodził ciepło, zatem stygnięcie Ziemi jeszcze bardziej przyspieszy. Wyniki naszych badań rzucają nowe światło na ewolucję dynamiki Ziemi. Wskazują, że Ziemia, podobnie jak Merkury czy Mars, schładza się szybciej i stanie się szybciej nieaktywna, wyjaśnia Murakami. Trudno jednak powiedzieć, ile czasu minie zanim ruchy konwekcyjne w płaszczu ustaną. Wciąż wiemy zbyt mało, by określić, kiedy do tego dojdzie, przyznają naukowcy. Żeby się tego dowiedzieć, uczeni muszą najpierw lepiej rozpoznać w czasie i przestrzeni procesy konwekcyjne w płaszczu. Ponadto muszą wiedzieć, jak rozpad pierwiastków radioaktywnych we wnętrzu Ziemi, który jest jednym z głównych źródeł ciepła, wpływa na dynamikę procesów płaszcza. « powrót do artykułu
  2. Astrofizycy uważają, że znaleźli potężne i unikatowe narzędzie do wykrywania ciemnej materii – egzoplanety. W opublikowanym przez siebie artykule naukowcy stwierdzają, że obecność ciemnej materii można wykryć, mierząc jej wpływ na temperaturę egzoplanet. Sądzimy, że istnieje 300 miliardów egzoplanet. Jeśli odkryjemy i przebadamy niewielki odsetek z nich, to zyskamy olbrzymią ilość informacji na temat ciemnej materii, stwierdził Juri Smironv z Ohio State University. Smirnov i Rebecca Lane ze SLAC National Accelerator Laboratory są autorami artykułu opublikowanego w Physical Review Letters. Uczony dodaje, że gdy ciemna materia zostaje przechwycona przez grawitację egzoplanet, jest wciągana do jądra planety, gdzie dochodzi do jej anihilacji, co wiąże się z uwolnieniem ciepła. Im więcej ciemnej materii, tym więcej ciepła jest w ten sposób emitowane. Ciepło to może zaś zostać zarejestrowane przez Teleskop Kosmiczny Jamesa Webba (James Webb Space Telescope – JWST), który ma zostać wystrzelony w październiku bieżącego roku. Jeśli egzoplanety będą wydzielały nadmiarowe ciepło związane z obecnością ciemnej materii, powinniśmy być w stanie to zauważyć, dodaje Smirnov. Zdaniem uczonych planety spoza Układu Słonecznego mogą być szczególnie pomocne w wykrywaniu lżejszej ciemnej materii, tej o niższej masie. Dotychczas nie prowadzono poszukiwań ciemnej materii w takich zakresach masy. Naukowcy uważają, że gęstość ciemnej materii rośnie w kierunku centrum Drogi Mlecznej. Jeśli to prawda, to powinniśmy zauważyć, że planety bliżej centrum galaktyki rozgrzewają się bardziej niż te na jej obrzeżach. Jeśli byśmy coś takiego zarejestrowali byłoby to niesamowite odkrycie. Wskazywałoby, że znaleźliśmy ciemną materię, mówi Smirnov. Smirnov i Lane proponują, by przyjrzeć się „gorącym Jowiszom” oraz brązowym karłom. To w tych obiektach najłatwiej będzie zauważyć nadmiarowe ciepło spowodowane obecnością ciemnej materii. Uczeni uważają też, że warto poszukać i badać swobodne planety, takie, które nie orbitują wokół gwiazd. W ich przypadku nadmiarowe ciepło powinno być jeszcze bardziej oczywistym sygnałem obecności ciemnej materii, gdyż nie dociera do nich energia z gwiazd macierzystych. Olbrzymią zaletą wykorzystania egzoplanet jako wykrywaczy ciemnej materii jest fakt, że nie potrzeba do tego nowych rodzajów urządzeń lub technologii czy przeprowadzania takich badań, jakich dotychczas nie wykonywano. Obecnie znamy ponad 4300 egzoplanet i niemal 6000 kandydatów na planety. W ciągu najbliższych lat misja Gaia, wysłana przez Europejską Agencję Kosmiczną, powinna wykryć dziesiątki tysięcy kolejnych egzoplanet. Będziemy więc mieli olbrzymią liczbę obiektów, które można badać w poszukiwaniu ciemnej materii. « powrót do artykułu
  3. Do fotosyntezy potrzebne jest nie tylko światło, ale i ciepło - dowodzą naukowcy z Lublina. Rośliny odzyskują część ciepła, które powstaje w fotosyntezie, i używają go ponownie do zasilania reakcji napędzanych światłem, w tym – do produkcji tlenu – tłumaczy prof. Wiesław Gruszecki. Naukowcy mają nadzieję, że wiedzę dotyczącą gospodarowania strumieniami energii w aparacie fotosyntetycznym roślin uda się wykorzystać np. w rolnictwie, by zwiększyć plony. Energia niezbędna do podtrzymywania życia na Ziemi pochodzi z promieniowania słonecznego. Wykorzystanie tej energii możliwe jest dzięki fotosyntezie. W ramach fotosyntezy dochodzi do przetwarzania energii światła na energię wiązań chemicznych, która może być wykorzystana w reakcjach biochemicznych. W procesie tym rośliny rozkładają też wodę, wydzielając do atmosfery tlen, potrzebny nam do oddychania. Do tej pory sądzono, że w fotosyntezie rośliny korzystają tylko z kwantów światła. Zespół z Uniwersytetu Marii Curie-Skłodowskiej i Instytutu Agrofizyki PAN w Lublinie wskazał jednak dodatkowy mechanizm: do fotosyntezy potrzebna jest również energia cieplna, która - jak się wydawało - powstaje w tym procesie jako nieistotny skutek uboczny. Tymczasem z badań wynika, że ten „recykling energii” jest niezbędny w procesie wydajnego rozkładania wody do tlenu. Wyniki ukazały się w renomowanym czasopiśmie Journal of Physical Chemistry Letters. Wydajność energetyczna fotosyntezy jest niewielka – mówi w rozmowie z PAP prof. Wiesław Gruszecki z UMCS. Wyjaśnia, że roślina zamienia w biomasę najwyżej 6 proc. energii słonecznej, którą pobiera. Natomiast około 90 proc. energii pochłanianej ze światła jest oddawana do środowiska w postaci ciepła. Dotąd uważaliśmy, że frakcja oddawana do środowiska w postaci ciepła, z punktu widzenia wydajności energetycznej tego procesu, jest nieodwracalnie stracona. Ku naszemu zaskoczeniu okazało się jednak, że aparat fotosyntetyczny w roślinach jest na tyle sprytny, że potrafi jeszcze wykorzystywać część energii rozproszonej na ciepło – mówi. Naukowiec podkreśla, że są to badania podstawowe. Jego zdaniem mają one jednak szansę znaleźć zastosowanie choćby w rolnictwie. Jeśli procesy produkcji żywności się nie zmienią, to w połowie XXI wieku, kiedy Ziemię może zamieszkiwać nawet ponad 9 mld ludzi, nie starczy dla wszystkich jedzenia, tym bardziej przy niepokojących zmianach klimatycznych – alarmuje naukowiec. Badania jego zespołu są częścią międzynarodowych działań naukowców. Badają oni, co reguluje przepływy i wiązanie energii w procesie fotosyntezy. W powszechnym przekonaniu wiedza ta umożliwi inżynierię bądź selekcję gatunków roślin, które dawać będą większe plony. Gdyby produkować rośliny, w których ścieżka odzyskiwania energii cieplnej będzie jeszcze sprawniejsza – uważa badacz – to fotosynteza przebiegać będzie efektywniej, a roślina produkować będzie więcej biomasy. To zaś przekłada się bezpośrednio na większe plony. Zdaniem prof. Gruszeckiego kolejnym miejscem, gdzie można zastosować nową wiedzę, jest produkcja urządzeń do sztucznej fotosyntezy. Prace nad nimi trwają już w różnych miejscach na Ziemi, również w Polsce. Naukowiec wyjaśnia, na czym polegało odkrycie jego zespołu. Z badań wynika, że wśród struktur w chloroplastach, w których zachodzi fotosynteza, znajdują się kompleksy barwnikowo-białkowe. Pełnią one funkcję anten zbierających światło. Okazuje się, że kompleksy te grupują się spontanicznie w struktury zdolne do recyklingu energii rozproszonej w postaci ciepła. Anteny te przekazują również energię wzbudzenia uzyskaną z ciepła do centrów fotosyntetycznych, w których zachodzą reakcje rozszczepienia ładunku elektrycznego (w szczególności do Fotosystemu II). Proces ten wpływa na wzrost wydajności energetycznej fotosyntezy. I umożliwia wykorzystanie w tym procesie promieniowania o niższej energii (również z obszaru bliskiej podczerwieni). Wydaje się mieć to szczególne znaczenie w warunkach niskiej intensywności światła słonecznego. « powrót do artykułu
  4. Żelazne nanodruciki z lekami można doprowadzać do zmian nowotworowych za pomocą zewnętrznego pola magnetycznego. Później wystarczy aktywować 3-elementowy proces zabijania zmienionych chorobowo komórek. Nad rozwiązaniem pracowali m.in. naukowcy z Uniwersytetu Nauki i Techniki Króla Abdullaha (KAUST). Żelazo jest pierwiastkiem niezbędnym do życia (zarówno dla ludzi, jak i dla zwierząt). Ten pierwiastek śladowy wchodzi w skład białek i enzymów, np. hemoglobiny czy enzymów cyklu Krebsa. Jak zauważa Jürgen Kosel z KAUST, dzięki cechom magnetycznym nanocząstki tlenku żelaza znalazły zastosowanie jako środki kontrastowe w obrazowaniu techniką rezonansu magnetycznego (MRI). Materiały zawierające żelazo są biokompatybilne. Za pomocą nieszkodliwego pola magnetycznego możemy je transportować i koncentrować w wybranym obszarze, obracać lub wprawiać w drgania, tak postąpiliśmy w naszym studium, a także wykrywać za pomocą MRI - opowiada Aldo Martínez-Banderas. Przykładając pole magnetyczne o niskiej mocy, zespół wprawiał nanodruciki w drgania; zjawisko to prowadziło do powstawania otworów w błonie komórkowej. Druciki, w których rdzeń z żelaza jest powleczony tlenkiem żelaza, świetnie absorbują podczerwień i się podgrzewają. Ponieważ światło o tej długości penetruje w głąb tkanek, nanodruciki można podgrzewać laserami skierowanymi w miejsce guza. Wykazano, że wydajność konwersji fototermicznej przekraczała 80%, co przekładało się na dużą wewnątrzkomórkową dawkę ciepła. Za pomocą wrażliwych na pH łączników do nanodrucików rdzeń/otoczka "mocowano" cytostatyk doksorubicynę. Jako że środowisko guza jest zazwyczaj bardziej kwaśne niż zdrowa tkanka, łącznik wybiórczo rozkłada się w lub w pobliżu komórek nowotworowych, uwalniając lek dokładnie tam, gdzie jest potrzebny. Terapia łączona skutkowała niemal całkowitą ablacją komórek nowotworowych i była skuteczniejsza niż pojedyncze terapie - podkreśla Martínez-Banderas. [...] Możliwości żelaznych nanomateriałów sprawiają, że wydają się one bardzo obiecujące, jeśli chodzi o tworzenie biomedycznych nanorobotów - podsumowuje Kosel. « powrót do artykułu
  5. Amerykańscy naukowcy opracowali syntetyczne rozwiązanie, które wykazuje fototropizm, czyli podąża za kierunkiem padającego światła. Jest ono porównywane do sztucznego słonecznika. Opis systemu SunBOT (od ang. sunflower-like biomimetic omnidirectional tracker) ukazał się w periodyku Nature Technology. Akademicy podkreślają, że wiele sztucznych materiałów wykazuje reakcje nastyczne, co oznacza. że kierunek wygięcia nie zależy od tego, z jakiego miejsca działa bodziec. Niestety, dotąd żaden nie wykrywał i nie podążał precyzyjnie za kierunkiem bodźca, a więc nie wykazywał tropizmu. SunBOT powstał z połączenia 2 rodzajów nanomateriałów: światło- i termowrażliwego. Pierwszy pochłania światło i przekształca je w ciepło, drugi zaś kurczy się pod wpływem ekspozycji na ciepło. Zespół nadał polimerowi formę łodygi i oświetlał ją pod różnymi kątami. Okazało się, że łodyga wyginała się, nakierowując się na źródło światła. Jak tłumaczą Amerykanie, światło było absorbowane przez konkretny fragment łodygi, a powstające ciepło prowadziło do kurczenia się materiału po stronie źródła światła, przez co łodyga wyginała się w jego kierunku. Łodyga zatrzymywała się, gdy zaczynała częściowo zasłaniać promień. Podczas testów na łodydze umieszczano też "kwiat" będący małym panelem słonecznym. Wyniki pokazują, że urządzenie można wykorzystać do utrzymania ogniw fotowoltaicznych nakierowanych na słońce (znacząco podwyższa to ich wydajność).     « powrót do artykułu
  6. Naukowcy z Wydziału Inżynierii Chemicznej i Procesowej Politechniki Warszawskiej wykorzystują tlenek grafenu i związki grafenopochodne do opracowania nowych materiałów zabezpieczających przed promieniowaniem podczerwonym. Projekt IR-GRAPH realizowali ze środków Narodowego Centrum Badań i Rozwoju. Chcemy, żeby nasze materiały stanowiły barierę zarówno przed wpuszczaniem, jak i wypuszczaniem ciepła – mówi kierująca pracami dr inż. Marta Mazurkiewicz-Pawlicka. To kompozyty. Tworzymy je na bazie polimerów, obecnie dwóch rodzajów. Jako napełniacz stosujemy materiały grafenowe z dodatkiem tlenków metali, np. tlenku tytanu. Takie połączenie gwarantuje skuteczne ekranowanie. Materiały grafenowe są dodawane w celu pochłonięcia promieniowania, a tlenki metali mają za zadanie je rozpraszać – wyjaśnia badaczka. Konkurencyjny materiał Na rynku są już dostępne np. folie na okna, które chronią przed promieniowaniem. Materiały opracowywane przez naukowców z Politechniki Warszawskiej mogą być jednak dla nich konkurencją. Żeby obniżyć temperaturę o kilka stopni Celsjusza, dodaje się tam około 5% napełniacza – tłumaczy dr Mazurkiewicz-Pawlicka. My podobne wyniki uzyskujemy przy dodaniu 0,1% napełniacza, czyli 50 razy mniej. Na razie zespół skupia się jednak na samych materiałach, a nie konkretnych aplikacjach. Choć nietrudno wskazać potencjalne zastosowania, takie jak właśnie okna, ale też elewacje, a nawet tkaniny. Zimą takie materiały chroniłyby przed utratą ciepła, a latem przed nadmiernym nagrzaniem. W przypadku budynków czy pojazdów mogłaby to być pewna alternatywa dla powszechnie dzisiaj stosowanej klimatyzacji. Jej używanie pochłania przecież mnóstwo energii. Im bardziej chcemy zmienić temperaturę w stosunku do tej naturalnej dla danego pomieszczenia, tym więcej energii potrzeba. Każde mniej energochłonne wsparcie oznaczałoby oszczędności w budżecie i korzyść dla środowiska. Patrząc w przyszłość Nasi naukowcy przeprowadzili badania krótkoterminowe. Ich wyniki są obiecujące, ale wiele kwestii wymaga jeszcze dokładniejszego sprawdzenia, m.in. zachowanie polimerów w promieniowaniu UV, podwyższonej temperaturze czy zmienionej wilgotności. Ważne jest przetestowanie dotychczasowych rozwiązań zarówno w różnych warunkach, jak i w dłuższym czasie. Badania takie można przeprowadzić przy użyciu komory klimatycznej, do której na kilka tygodni można wstawić próbkę materiału i ją obserwować. Na przykład żeby wykorzystać nasze materiały w folii na okna musimy popracować nad barwą, bo obecna, w odcieniach szarości, ogranicza widzialność – mówi dr Mazurkiewicz-Pawlicka. Chcemy też znaleźć nowe polimery, które mogłyby zostać użyte jako osnowa w naszych materiałach. Współpraca Zespół dr Mazurkiewicz-Pawlickiej tworzyli dr hab. Leszek Stobiński, dr Artur Małolepszy oraz grupa studentów wykonujących w ramach projektu prace inżynierskie i magisterskie. Swoją cegiełkę dołożyli też członkowie Koła Naukowego Inżynierii Chemicznej i Procesowej. Zrobili urządzenie, które mierzy efektywność naszych folii – opowiada dr Mazurkiewicz-Pawlicka. Składa się z lampy emitującej promieniowanie podczerwone i czujnika, który mierzy, o ile stopni udało się obniżyć temperaturę. W ramach IR-GRAPH naukowcy z PW ściśle współpracowali z Tatung University na Tajwanie. Korzystali także ze wsparcia Wydziału Fizyki Uniwersytetu Warszawskiego. Prof. Dariusz Wasik, Dziekan Wydziału i dr hab. Andrzej Witowski są specjalistami w fizyce ciała stałego i wykonali dla nas pomiary spektrometryczne – mówi dr Mazurkiewicz-Pawlicka. Dlaczego ekranować podczerwień? Grafen kojarzony jest przede wszystkim z zastosowaniami w elektronice i automatyce. Wykorzystanie go do ekranowania promieniowania nie jest jeszcze tak rozpowszechnione. Są doniesienia literaturowe, że grafen ekranuje promieniowanie elektromagnetyczne – opowiada dr Mazurkiewicz-Pawlicka. Jest to szeroko badane pod kątem promieniowania mikrofalowego, a ostatnio też terahercowego, głównie w zastosowaniach militarnych. Pomyśleliśmy, żeby sprawdzić właściwości grafenu dla promieniowania podczerwonego, bo na ten temat wiadomo niewiele. Promieniowanie podczerwone charakteryzuje się długością fal między 780 nanometrów a 1 milimetr. Wspólnie ze światłem widzialnym i promieniowaniem UV tworzy spektrum promieniowania słonecznego. W nadmiarze ma ono negatywny wpływ na naszą skórę. A aż około 50% tego promieniowania, które dociera do powierzchni Ziemi, stanowi właśnie podczerwień (odczuwana w postaci ciepła). Dlatego tak ważne jest jej ekranowanie. « powrót do artykułu
  7. Niedawno donosiliśmy o wynikach badań, z których wynika, że oceany ogrzały się bardziej niż dotychczas sądziliśmy. Teraz ich autorzy informują, że popełnili błąd w obliczeniach. Podkreślają przy tym, że pomyłka nie falsyfikuje użytej metodologii czy nowego spojrzenia na biochemię oceanów, na których metodologię tę oparto. Oznacza jednak, że konieczne jest ponowne przeprowadzenie obliczeń. Jak mówi współautor badań, Ralph Keeling, od czasu publikacji wyników badań w Nature, ich autorzy zauważyli dwa problemy. Jeden z nich związany jest z nieprawidłowym podejściem do błędów pomiarowych podczas mierzenia poziomu tlenu. Sądzimy, że łączy efekt tych błędów będzie miał niewielki wpływ na ostateczny wynik dotyczący ilości ciepła pochłoniętego przez oceany, ale wynik ten będzie obarczony większym marginesem błędu. Właśnie prowadzimy ponowne obliczenia i przygotowujemy się do opublikowania autorskiej poprawki na łamach Nature, stwierdza Keeling. Redakcja Nature również postanowiła pochylić się nad problemem. Dla nas, wydawców, dokładność publikowanych danych naukowych ma zasadnicze znaczenie. Jesteśmy odpowiedzialni za skorygowanie błędów w artykułach, które opublikowaliśmy, oświadczyli przedstawiciele pisma. « powrót do artykułu
×
×
  • Dodaj nową pozycję...