Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' EMOGI' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 1 wynik

  1. W Niemczech stworzono algorytm, który identyfikuje geny biorące udział w powstawaniu nowotworów. Naukowcy zidentyfikowali dzięki niemu 165 nieznanych dotychczas genów zaangażowanych w rozwój nowotworu. Co bardzo istotne, algorytm ten identyfikuje również geny, w których nie doszło do niepokojących zmian w DNA. Jego powstanie otwiera nowe możliwości w walce z nowotworami i personalizowanej medycynie. W nowotworach komórki wyrywają się spod kontroli. Rozrastają się i rozprzestrzeniają w niekontrolowany sposób. Zwykle jest to spowodowane mutacjami w DNA. Jednak w przypadku niektórych nowotworów mamy do czynienia z bardzo małą liczbą zmutowanych genów, co sugeruje, że w grę wchodzą tutaj inne przyczyny. Naukowcy z Instytutu Genetyki Molekularnej im. Maxa Plancka oraz Instytut Biologii Obliczeniowej Helmholtz Zentrum München opracowali algorytm maszynowego uczenia się, który zidentyfikował 165 nieznanych dotychczas genów biorących udział w rozwoju nowotworów. Wszystkie nowo odkryte geny wchodzą w interakcje z dobrze znanymi genami pronowotworowymi. Algorytm EMOGI (Explainable Multi-Omics Graph Integration) potrafi też wyjaśnić związki pomiędzy elementami odpowiedzialnymi za powstanie nowotworu. Powstał on na podstawie dziesiątków tysięcy danych zgromadzonych w ramach badań nad nowotworami. Są tam informacje o metylacji DNA, aktywności poszczególnych genów, mutacjach, interakcji białek itp. itd. Na podstawie tych danych algorytm głębokiego uczenia się opracował wzorce oraz nauczył się rozpoznawania sygnałów molekularnych prowadzących do rozwoju nowotworu. Ostatecznym celem takiego algorytmu byłoby stworzenie dla każdego pacjenta całościowego obrazu wszystkich genów zaangażowanych w danym momencie w rozwój nowotworu. W ten sposób położylibyśmy podwaliny pod zindywidualizowaną terapię przeciwnowotworową, mówi Annalisa Marsico, która stoi na czele zespołu badawczego. Jej celem jest wybranie najlepszej terapii dla każdego pacjenta czyli takiego leczenia, które u konkretnej osoby da najlepsze wyniki i będzie miało najmniej skutków ubocznych. Co więcej, pozwoli nam to identyfikować nowotwory na wczesnych fazach rozwoju dzięki ich charakterystyce molekularnej. Dotychczas większość badaczy skupia się na patologicznych zmianach w sekwencjach genetycznych. Tymczasem w ostatnich latach coraz bardziej oczywiste staje się, że do rozwoju nowotworów mogą prowadzić również zaburzenia epigenetyczne czy rozregulowanie aktywności genów, stwierdza Roman Schulte-Sasse, doktorant współpracujący z Marsico. Dlatego właśnie naukowcy połączyli informacje o błędach w genomie z informacjami o tym, co dzieje się wewnątrz komórek. W ten sposób najpierw zidentyfikowali mutacje w genomie, a później znaleźli geny, które mają mniej oczywisty wpływ na rozwój nowotworu. Na przykład znaleźliśmy geny, których DNA jest niemal niezmienione, ale mimo to geny te są niezbędne do rozwoju guza, gdyż regulują dostarczanie mu energii, dodaje Schulte-Sasse. Tego typu geny działają poza mechanizmami kontrolnymi, gdyż np. doszło w nich do chemicznych zmian w DNA. Zmiany te powodują, że co prawda sekwencja genetyczna pozostaje prawidłowa, ale gen zaczyna inaczej działać. Takie geny to bardzo obiecujący cel dla terapii przeciwnowotworowych. Problem jednak w tym, że działają one w tle i do ich zidentyfikowania potrzebne są złożone algorytmy, dodaje uczony. Obecnie naukowcy wykorzystują swój algorytm do przeanalizowania związku pomiędzy proteinami a genami. Związki te można przedstawić w formie matematycznych grafów, stwierdza Schulte-Sasse. Dopiero współczesna technika pozwala na prowadzenie tego typu analiz. Schulte-Sasse już uruchomił algorytm, który analizuje dziesiątki tysięcy takich grafów z 16 różnych typów nowotworów. Każdy z grafów składa się z od 12 000 do 19 000 punktów z danymi. Już teraz zaczynamy zauważać pewne wzorce zależne od typu nowotworu. Widzimy dowody na to, że rozwój guzów jest uruchamiany za pomocą różnych mechanizmów molekularnych w różnych organach, wyjaśnia Marsico. Szczegóły badań zostały opublikowane na łamach Nature Machine Intelligence. « powrót do artykułu
×
×
  • Dodaj nową pozycję...