Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'wzgórze'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 6 results

  1. Skany mózgu dwóch szczepów myszy wypijających znaczne ilości alkoholu ujawniły, że u zwierząt pozbawionych receptorów dopaminy DRD2 dochodzi do zmniejszenia objętości kory mózgowej i wzgórza. Oznacza to, że receptory DRD2 zabezpieczają przed uszkodzeniami mózgu przez alkohol. Dr Foteini Delis, neuroanatom z Behavioral Neuropharmacology and Neuroimaging Lab w Brookhaven, przypomina, że już wcześniejsze odkrycia sugerowały, że receptory dopaminowe D2 chronią przed uzależniającym wpływem alkoholu. W ramach najnowszego studium Amerykanie sprawdzali, jak spożycie alkoholu oddziałuje na ogólną objętość mózgu oraz objętość poszczególnych struktur/rejonów u zwykłych myszy oraz gryzoni z wyeliminowanym genem receptorów dopaminowych D2. Przez pół roku połowa każdej z grup piła czystą wodę, a reszta 20-procentowy etanol. Po upływie tego czasu mózg wszystkich zwierząt zbadano za pomocą rezonansu magnetycznego. Okazało się, że przewlekłe spożycie alkoholu prowadziło do ogólnej atrofii mózgu, oraz zmniejszenia objętości kory i wzgórza, ale tylko u zwierząt z brakującymi receptorami DRD2. Jeden z członków zespołu, Peter Tanatos, podkreśla, że uszkodzenia mózgu przypominały te widywane u alkoholików, dlatego myszy stanowią wiarygodny model badań. U ludzi te rejony mózgu są krytyczne dla przetwarzania mowy, danych czuciowych oraz sygnałów ruchowych, a także tworzenia długotrwałych wspomnień. Poziom DRD2 poniżej normy zwiększa jednostkową podatność na uszkadzające działanie alkoholu. Ponieważ oznacza on także podwyższone ryzyko uzależnienia, staje się jasne, że to układ dopaminergiczny powinien się stać przedmiotem badań nad istotą i leczeniem alkoholizmu.
  2. Czemu jednym można grać nad uchem na puzonie i nie wywrze to na nich najmniejszego wrażenia, a inni budzą się pod wpływem najmniejszego szelestu i śpią jak przysłowiowy zając pod miedzą? Ci pierwsi zawdzięczają swoją przydatną w wielu okolicznościach umiejętność falom wzmożonej aktywności wzgórza (Current Biology). Zespół Jeffreya Ellenbogena z wydziału snu Massachusetts General Hospital (MGH), Brigham and Woman's Hospital (BWH) oraz Cambridge Health Alliance (CHA) monitorował aktywność mózgu 12 dorosłych osób, które spędziły 3 kolejne noce w laboratorium snu. Najpierw po prostu spały w specjalnym dźwiękoszczelnym i smoliście czarnym pomieszczeniu. Potem eksperyment powtórzono jeszcze dwukrotnie, tym razem odtwarzając ochotnikom 14 dźwięków, np. ruch uliczny czy spłukiwanie wody w toalecie. Dźwięki powtarzano co 30 sekund, stopniowo zwiększając ich głośność, aż do momentu wykrycia w EEG oznak pobudzenia. Chcieliśmy dociec, co mózg robi, by ułatwić stabilny sen nawet w obliczu hałasów i czemu niektórym przychodzi to łatwiej niż pozostałym. Okazało się, że u osób budzących się dopiero po głośniejszych dźwiękach występowała większa częstotliwość tzw. wrzecion snu (nazywanych czasem falami sigma). Wskazują one na początek fazy snu NREM, czyli snu o wolnych ruchach gałek ocznych. Zasięg fal impulsu to 12 do 16 Hz, a czas trwania zaledwie 0,5-1,5 sekundy. Wrzeciona są generowane przez wzgórze, które, wg naukowców, działa jak izolator hamujący proces przetwarzania i reagowania m.in. na dźwięki. W ciągu 3 nocy u wszystkich osób utrzymywał się stały wskaźnik wrzecion. Ellenbogen podkreśla, że większość wolontariuszy nie zdawała sobie sprawy z przerywania snu, co oznacza, że hałas może mieć większy wpływ na jakość snu, niż jednostce się wydaje. Po dotarciu do mózgu większość informacji czuciowych, w tym dźwięki, przechodzi przez wzgórze. Kora jest następnym etapem, na którym sygnał zostanie dostrzeżony. Komunikacja między tymi dwoma obszarami ma miejsce także w czasie snu, co widać w zapisie EEG. Manipulując nagromadzeniem wrzecion, można by pomóc osobom odpoczywającym w głośnym otoczeniu bądź narzekającym na nieciągłość snu związaną ze zbyt częstymi pobudkami. Zaprojektowaliśmy studium na 3 noce, by zdobyć jak najwięcej danych, ale efekt był tak silny, że mogliśmy go zobaczyć po jednej głośnej nocy. Teraz chcemy zbadać techniki behawioralne, leki i urządzenia, które mogą zwiększyć częstość występowania wrzecion snu i sprawdzić, czy pomoże to w podtrzymaniu snu w hałasie [...].
  3. Jednym z objawów często spotykanych u osób cierpiących na migrenę jest pojawienie się lub wzmocnienie bólu głowy w reakcji na światło. Co ciekawe jednak, ten sam symptom pojawia się często także u... niewidomych. Dlaczego tak się dzieje, wyjaśniają badacze z Harvard Medical School w Bostonie. Związek pomiędzy migreną i światłowstrętem interesował badaczy od dawna. Kompletnie nie mieliśmy pojęcia, w jaki sposób światło i ból współgrają ze sobą w mózgu, wspomina główny autor odkrycia, dr Rami Burstein. Jego zespół zidentyfikował jednak mechanizm odpowiedzialny za to zjawisko, o czym świadczy publikacja zamieszczona w internetowym wydaniu prestiżowego czasopisma Nature Neuroscience. Do udziału w badaniach koledzy dr. Burnsteina zaprosili 20 niewidomych cierpiących na migrenę. Czternaścioro z nich uskarżało się na światłowstręt (osoby te potrafiły więc, oczywiście, odróżniać światło od ciemności, lecz nie były w stanie dostrzegać jakichkolwiek obrazów). U pozostałych światłowstrętu nie stwierdzono, a dodatkowo osoby te posiadały całkowicie nieaktywne nerwy wzrokowe. Dzięki zastosowaniu pomiaru aktywności pojedynczych komórek nerwowych badaczom udało się zidentyfikować neurony odpowiedzialne za "bolesną" reakcję na światło. Jak się okazało, są one zlokalizowane we wzgórzu - części mózgu odpowiedzialnej za wstępne przetwarzanie bodźców wzrokowych - zaś ich aksony (długie wypustki odpowiedzialne za odbieranie bodźców) sięgały bezpośrednio do siatkówki oka. Niezwiązany z autorami studium dr Richard Lipton, szef Montefiore Headache Center, komentuje: [to odkrycie] dostarcza anatomicznych i fizjologicznych podstaw dla pospolitego wrażenia - światło wzmacnia ból, i to nie dlatego, że jest się płaczkiem, lecz dlatego, że istnieje anatomiczna ścieżka łącząca system odpowiedzialny za widzenie oraz szlak odpowiedzialny za powstawanie bólu głowy. Niestety, stworzenie leków pozwalających na wyregulowanie aktywności odkrytych komórek może zająć wiele lat. Identyfikacja potencjalnego celu dla takiej terapii jest jednak bez wątpienia kamieniem milowym w badaniach nad migreną.
  4. Mięśnie rozbudowują się dzięki ćwiczeniom, np. na siłowni. By uzyskać podobny efekt w przypadku mózgu, warto zwrócić się ku medytacji. Naukowcy z Uniwersytetu Kalifornijskiego w Los Angeles zbadali za pomocą rezonansu magnetycznego o wysokiej rozdzielczości grupę medytujących osób. Dzięki temu zauważyli, że u ludzi, którzy praktykują od dawna, pewne obszary mózgu są większe niż w grupie kontrolnej. W wyniku medytacji wzrastała objętość hipokampa, kory okołooczodołowej (ang. orbito-frontal cortex), wzgórza i zakrętu skroniowego dolnego. Wszystkie te rejony uczestniczą w procesach regulacji emocjonalnej. Wiemy, że osoby, które stale medytują, mają niezwykłą zdolność wywoływania pozytywnych uczuć, zachowywania równowagi emocjonalnej i angażowania się w przemyślane zachowania. Obserwowane różnice w anatomii mózgu mogą dać nam wskazówkę, skąd się to bierze – uważa dr Eileen Luders. W amerykańskim eksperymencie wzięły udział 44 osoby: 22 trafiły do grupy kontrolnej, a 22 angażowały się w rozmaite formy medytacji, np. zazen, śamathę i vipassanę. Przedstawiciele drugiej grupy praktykowali medytację od 5 do 46 lat, średnia wynosiła jednak 24 lata. Ponad połowa twierdziła, że szczególnie ważna jest głęboka koncentracja, większość przyznawała, że na medytowanie poświęca od 10 do 90 minut dziennie. Oprócz rezonansu magnetycznego 3D, Kalifornijczycy zastosowali dwie metody mierzenia różnic w budowie mózgu. Pierwsza polegała na automatycznym podzieleniu mózgu na kilka obszarów zainteresowania, co pozwalało na bezpośrednie porównywanie rozmiarów konkretnych struktur. Druga bazowała na segmentowaniu na poszczególne rodzaje tkanek, przez co można było np. zestawiać ilość istoty szarej w wybranych rejonach. W ten właśnie sposób neurolodzy stwierdzili, że u osób medytujących powiększa się objętość prawego hipokampa, ilość istoty szarej w prawej korze okołooczodołowej, prawym wzgórzu i lewym zakręcie skroniowym dolnym. Nie znaleziono za to obszarów, których wielkość byłaby u niemedytujących większa niż u medytujących. W przyszłości zespół Luders zamierza sprawdzić, czy medytowanie wiąże się ze zmianami na poziomie mikroskopowym, m.in. wzrostem liczby neuronów i ich wielkości lub przekształceniem wzorców połączeń nerwowych. Ponieważ omawiane studium nie było badaniem podłużnym, nie można stwierdzić, czy praktyki duchowe doprowadziły do rozrostu określonych rejonów mózgu, czy też medytujący od początku mieli tam więcej istoty szarej, co przyciągnęło ich do aktywności tego rodzaju. Luders skłania się jednak do pierwszej hipotezy, powołując się na liczne badania dotyczące plastyczności mózgu i wpływu wzbogacenia środowiska na zmiany w jego strukturze.
  5. Dojrzewanie mózgu płodu jest zależne od stymulacji przez matkę - informują niemieccy naukowcy. Do rozwoju centralnego układu nerwowego potrzebna jest proteina przekazywana za pośrednictwem łożyska przez krew. Odkrycie było możliwe dzięki wcześniejszemu zidentyfikowaniu peptydu (tzn. struktury podobnej do białek, lecz złożonej z mniejszej liczby cząsteczek budulcowych - aminokwasów) w mózgu dojrzewającego płodu. Molekuła ta, nazwana Y-P30, ma charakter cząsteczki sygnałowej i promuje przetrwanie neuronów w części mózgu zwanej wzgórzem u dojrzewającego w macicy organizmu. Dalsze badania odkrytego związku, wykonane właśnie przez Niemców, wykazały, że jest on syntetyzowany przez jedną z populacji komórek odpornościowych matki, nie zaś przez sam płód, jak wcześniej sądzono. Po wydzieleniu do matczynej krwi jest on przekazywany do łożyska, czyli miejsca wymiany składników krwi pomiędzy matką i płodem, a następnie trafia do dojrzewającego mózgu. Jak każda substancja sygnałowa, Y-P30 oddziałuje na organizm za pośrednictwem receptora, czyli białka zdolnego do jego wykrycia. W przypadku odkrytego peptydu receptorami okazały się być dwie molekuły: należące do przestrzeni międzykomórkowej białko plejotropina oraz proteoglikany należące do grupy syndekanów, wbudowane w błonę komórkową neuronów. Dalsze badania wykazały, że Y-P30 ułatwia wzajemne wiązanie obu swoich receptorów i dopiero powstały trójelementowy kompleks promuje przetrwanie komórek wzgórza. Dotychczas wiadomo było jedynie, że syndekan i plejotropina oddziałują na siebie, lecz szczegółowy mechanizm tej interakcji nie był znany. Teraz wiemy, że połączenie trzech związków utrzymuje przy życiu komórki nerwowe, a także stymuluje powstawanie aksonów, czyli wypustek służących do komunikacji z innymi neuronami. Odkrycie Niemców może mieć niebagatelne znaczenie dla badań nad fizjologią człowieka. Być może pozwoli ono także na korygowanie niektórych wad wrodzonych związanych z nieprawidłową budową lub funkcjonowaniem układu nerwowego.
  6. Mechanizm wpływu kokainy na transportery dopaminy znany jest od dość dawna. Gdy sygnał dopaminowy dotrze do celu, mediator ten jest wychwytywany przez transporter i w ten sposób jego działanie jest zatrzymywane. Kokaina blokuje wychwyt dopaminy, przez co mediator dłużej utrzymuje swoje działanie, a pozytywne doznania trwają dłużej i są znacznie bardziej intensywne. Tak właśnie sądzono przez lata. Okazuje się jednak, że istnieje także inny mechanizm działania narkotyku. Zbadaniem tego zjawiska zajął się zespół z Laboratorium Narodowego Brookhaven, należącego do amerykańskiego Departamentu Energii. Okazuje się, że kokaina wywiera znaczący wpływ na metabolizm mózgu nawet u myszy, w których mózgach całkowicie zablokowano syntezę transporterów dopaminowych. Odkrycie to skłoniło naukowców do przeprowadzenia dalszych eksperymentów. Mają one doprowadzić do odkrycia sposobu działania kokainy na mózg gryzoni pozbawionych białkowego transportera dopaminy. Przy badaniu tego fenomenu posłużono się wysoce zaawansowaną i precyzyjną techniką, zwaną pozytronową tomografią emisyjną (PET). Metoda ta pozwala na wykrycie subtelnych zmian intensywności metabolizmu na podstawie pomiaru pochłaniania glukozy znakowanej radioaktywnym izotopem. Określając mechanizm działania kokainy na mózg myszy, badano zmiany zużycia glukozy przez poszczególne jego części. Zanim podano narkotyk, badane myszy wykazywały znacznie wyższą aktywność mózgu w rejonie wzgórza oraz móżdżku niż myszy typu dzikiego (tzn. takie, u których defekt transportera nie występuje). Było to spowodowane stale podwyższonym poziomem dopaminy. Odkrycie to, nieplanowane w przebiegu eksperymentu, sugeruje, że przekaźnik ten może być istotny dla regulacji poziomu glukozy w tych rejonach mózgu. Podwyższony poziom glukozy przywodzi na myśl nadaktywność wspomnianych części mózgu, jednak kwestia ta wymaga bliższych badań. Kolejne ciekawe, choć zupełnie nieplanowane odkrycie dotyczące myszy pozbawionych transportera dopaminy dotyczy ich zachowań. Zwierzęta te prezentowały bowiem spektrum objawów charakterystycznych dla zespołu nadaktywności psychoruchowej, czyli ADHD. Jak więc widać, naukowcy "mieli oczy dookoła głowy" - przy okazji swoich badań dokonali także odkryć zupełnie innych, niż planowali. Dostarczyli prawdopodobnie innym eksperymentatorom przydatnych modeli kilku ludzkich chorób. Po dogłębnym zbadaniu myszy pozbawionych aktywności genu dla transportera dopaminy, podano zwierzętom kokainę i ponownie przeprowadzono analizę aktywności ich mózgu. Po aplikacji narkotyku, ogólny poziom metabolizmu mózgu spadł, jednak - zgodnie z oczekiwaniami - zmiana ta była wyraźniejsza u myszy z funkcjonującym przenośnikiem dopaminy. U myszy z defektem tego białka wykryto także spadek tempa metabolizmu we wzgórzu. Sugeruje to wyraźnie, że kokaina wpływa nie tylko na system przekaźnictwa związany z dopaminą. Spekuluje się, iż alternatywny mechanizm działania narkotyku opiera się na transporcie noradrenaliny oraz serotoniny. Odkrycie to ma szansę wspomóc badania nad poszukiwaniem skutecznej terapii zwalczającej uzależnienie od kokainy. Szczegółowe wyniki badań zostaną opublikowane w majowym numerze czasopisma Synapse.
×
×
  • Create New...