Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Amerykańscy naukowcy odkryli gen, którego wstrzyknięcie do ucha w ciągu 10 dni od ogłuszającego wydarzenia pozwala odzyskać zdolność słyszenia. Math1 umożliwia naprawę uszkodzonych komórek rzęsatych narządu Cortiego.

Już wcześniej wykazano, że u świnek morskich Math1 pozwala uzyskać komórki rzęsate z otaczających je komórek podporowych. Teraz David He z Creighton University udowodnił, że ten sam gen jest w stanie zreperować już istniejące komórki czuciowe. Jest tylko jeden warunek, musi być podany w stosunkowo wąskim przedziale czasowym.

Zespół wystawił świnki morskie na oddziaływanie dźwięku będącego odpowiednikiem wystrzelenia 200 naboi. Potem zwierzęta nie mogły usłyszeć niczego, co było cichsze od piły łańcuchowej. Kiedy jednak do ich prawego ucha wstrzyknięto wirusy z genem Math1, niemal całkowicie odzyskały w nim słuch.

Naukowcy oceniali słuch świnek, przyglądając się aktywności pnia mózgu w odpowiedzi na różne dźwięki (wykonano badanie słuchowych potencjałów wywołanych pnia mózgu). Potem oglądali też nowe komórki rzęsate pod mikroskopem. Ponieważ dochodziło do ekspresji świecącego na zielono białka, było na 100% wiadomo, iż gen został dostarczony. He wyjaśnia, że choć Math1 jest aktywny tylko czasowo, powstaje na tyle dużo białka, by zregenerować uszkodzone komórki.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Wykształcenie i doświadczenie muzyczne mają biologiczny wpływ na proces starzenia. Dotąd zakładano, że związane z wiekiem opóźnienia w procesie czasowania neuronalnego są nieuniknione. Można je jednak wyeliminować lub skompensować właśnie dzięki "uprawianiu" muzyki.
      Naukowcy z Northwestern University mierzyli automatyczne reakcje mózgu starszych i młodszych muzyków oraz niemuzyków na dźwięki mowy. Okazało się, że starsi muzycy nie tylko wypadali lepiej od niezwiązanych z muzyką rówieśników, ale i odkodowywali dźwięk tak samo dokładnie i szybko jak młodsi niemuzycy. To wspiera teorię, że stopień, do jakiego aktywnie doświadczamy dźwięków w ciągu życia, wywiera pogłębiony wpływ na działanie naszego układu nerwowego - podkreśla Nina Kraus.
      Wytrenowany mózg jest w stanie częściowo przezwyciężyć związaną ze starzeniem utratę słuchu. Co więcej, pomaga nawet edukacja rozpoczęta w jesieni życia. Wcześniej Kraus wykazała, że doświadczenia muzyczne mogą kompensować ubytki pamięciowe i problemy ze słyszeniem mowy w hałaśliwym środowisku - dwie bolączki starszych osób. Jej laboratorium badało wpływ doświadczeń muzycznych na plastyczność mózgu w różnym wieku (zarówno w normalnej populacji, jak i wśród chorych z różnymi zaburzeniami).
      Kraus przestrzega, że wyniki najnowszych badań nie wskazują, że muzycy mają przewagę nad niemuzykami w każdym zakresie i ich neurony szybciej reagują na każdy dźwięk. Studium zademonstrowało, że doświadczenie muzyczne wybiórczo oddziałuje na czasowanie elementów dźwięku ważnych dla odróżnienia jednej spółgłoski od drugiej.
      Podczas oglądania filmu z napisami u 87 prawidłowo słyszących dorosłych, dla których angielski był językiem ojczystym, mierzono automatyczne reakcje nerwowe. Muzycy zaczęli się uczyć gry przed ukończeniem 9 lat i byli zaangażowani muzycznie przez całe życie. Niemuzycy kształcili się muzycznie 3 lata bądź mniej.
    • By KopalniaWiedzy.pl
      Lekarze z londyńskiego King's College Hospital uratowali 9-miesięcznemu Iyaadowi Syedowi życie. Wirus zniszczył dziecku wątrobę, doprowadzając do jej ostrej niewydolności. Specjaliści nie czekali jednak na narząd i wstrzyknęli do jamy brzusznej hepatocyty dawcy. Komórki te mają działać jako czasowa wątroba. To pierwszy tego typu zabieg na świecie.
      Zaimplantowane hepatocyty neutralizują toksyny i produkują różne białka. By organizm chłopca ich nie odrzucił, przed wprowadzeniem do jego organizmu zostały pokryte pewnym związkiem występującym w glonach (nie ma więc potrzeby podawania immunosupresantów). Po 2 tygodniach od zabiegu własna wątroba Iyaada zaczęła się regenerować.
      Dwutygodniowy Iyaad trafił do szpitala, bo rodzice zauważyli, że jego gałki oczne uległy zażółceniu, a dziecko zaczęło wydawać dziwne dźwięki. Lekarze zdecydowali się na eksperymentalną metodę, gdy do niewydolności wątroby dołączyła się niewydolność nerek.
      Nie wiadomo, czy technika będzie pomocna także dla innych pacjentów z ostrą niewydolnością wątroby. Lekarze z King's College Hospital podkreślają, że by przetestować jej skuteczność, należy przeprowadzić badania kliniczne na jak największej próbie.
    • By KopalniaWiedzy.pl
      Po 55 latach lekarze z New York Eye and Ear Infirmary przywrócili pacjentowi wzrok w oku uderzonym w dzieciństwie kamieniem. Doszło wtedy do odwarstwienia siatkówki i innych powikłań (Journal of Medical Case Reports).
      W wieku 23 lat choremu usunięto zaćmę, dzięki czemu przez jakiś czas widział światło. Gdy ostatnio zgłosił się do szpitala, uskarżał się na ból. Zdiagnozowano u niego krwawienie do komory przedniej oka, jaskrę neowaskularyzacyjną (która rozwija się, gdy dochodzi do nadmiernego rozrostu naczyń krwionośnych w tęczówce; ponieważ zaburza to przepływ płynów w oku, następuje wzrost ciśnienia), wysokie ciśnienie śródgałkowe oraz odwarstwienie siatkówki.
      Okuliści rozpoczęli postępowanie od ustabilizowania ciśnienia w oku. Potem zajęli się jaskrą. Uciekli się do leczenia przeciwciałami monoklonalnymi. Szybko okazało się, że choć nikt tego nie oczekiwał, pacjent odzyskał widzenie światła. Po operacji przyłożenia siatkówki ustalono, że jest on w stanie policzyć palce z odległości 5 metrów. Po roku pacjent przeszedł jeszcze jedną operację siatkówki, ponieważ tworzące się blizny powodowały ponowne odwarstwienie jej fragmentów.
      Dr Olusola Olawoye podkreśla, że po jakimś czasie w odwarstwionej siatkówce dochodzi do zmian degeneracyjnych, dlatego odzyskanie wzroku po przyłożeniu jej po tylu latach jest ewenementem i najprawdopodobniej pierwszym tego typu przypadkiem na świecie. Amerykanie cieszą się nie tylko ze względu na swojego pacjenta. Wierzą, że dzięki badaniom nad podobnymi do komórek macierzystych komórkami progenitorowymi siatkówki możliwe będą przywracające wzrok przeszczepy.
    • By KopalniaWiedzy.pl
      Młode amfipriony, zwane także błazenkami, posługują się słuchem, by w ciągu dnia wykryć i ominąć obfitujące w drapieżniki rafy koralowe. Wydaje się jednak, że wzrost zakwaszenia oceanów pogarsza ich słuch, co wystawia ryby na oczywiste niebezpieczeństwo (Biology Letters).
      Od rewolucji przemysłowej niemal połowa dwutlenku węgla, uwolnionego w wyniku spalania paliw kopalnych, została pochłonięta przez oceany. Wskutek tego pH wody zaczęło spadać szybciej niż kiedykolwiek wcześniej w ciągu ostatnich 650 tys. lat. Podczas gdy uprzednie badania pokazały, że zjawisko to prowadzi do utraty przez ryby węchu, najnowsze studium ichtiologów z Uniwersytetu w Bristolu oraz Uniwersytetu Jamesa Cooka dodało do tego również upośledzenie słuchu.
      Jak wyjaśnia dr Steve Simpson ze Szkoły Nauk Biologicznych Uniwersytetu Bristolskiego, na początku młode amfipriony trzymano w dzisiejszych warunkach, potem wypróbowano 2 kolejne scenariusze z dodatkowymi dawkami CO2; uzwględniono przy tym przewidywania Międzyrządowego Zespołu ds. Zmian Klimatu (IPCC) na 2050 i 2100 rok. Po 17-20 dniach Simpson monitorował reakcje narybku na odgłosy rafy bogatej w drapieżniki, na które składały się m.in. dźwięki wydawane przez skorupiaki oraz inne ryby.
      Zaprojektowaliśmy zupełnie nową komorę wyboru, która pozwoliła nam odtwarzać hałasy rafy przez podwodne głośniki i monitorować, jak nasze laboratoryjne ryby reagują. Ryby hodowane w warunkach odpowiadających współczesnym odpływały od źródła dźwięków drapieżnika, ale już osobniki hodowane przy stężeniach CO2 przewidywanych na 2050 i 2100 r. nie wykazywały żadnej reakcji.
      Brytyjsko-australijskie studium zademonstrowało, że zakwaszenie oceanów wpływa nie tylko na zewnętrzne systemy czuciowe, ale także na te zlokalizowane głębiej w ciele ryb (uszy są np. ukryte z tyłu głowy). Umieściliśmy dzisiejsze ryby w jutrzejszych warunkach [...]. Nie wiemy, czy w ciągu życia kilku kolejnych pokoleń zwierzęta te zdołają się przystosować i tolerować zakwaszenie oceanów.
    • By KopalniaWiedzy.pl
      Kałamarnice słyszą, ale zupełnie inaczej niż my, ludzie. Nie polegają na zmianach ciśnienia wywołanych przez fale dźwiękowe, lecz wyczuwają generowany przez nie ruch wody (The Journal of Experimental Biology).
      Wykrywają dźwięk samymi sobą, poruszając się w przód i w tył z falą dźwiękową - tłumaczy dr T. Aran Mooney, biolog morski z Woods Hole Oceanographic Institution, porównując zwierzę do owocu zatopionego w zastygłej galaretce. Gdy potrząsasz galaretką, przesuwa się cały blok, a wraz z nim owoc.
      Amerykanie badali kalmara loligo długopłetwego (Loligo pealeii). Okazało się, że potrafi on wykryć dźwięki o niskiej częstotliwości do 500 herców. Zidentyfikuje więc pomruk fal czy wiatr, ale już nie komunikaty zębowców, np. delfinów, których łupem pada. Teraz zespół próbuje lepiej zrozumieć jego mechanizm słyszenia.
      Jest taki pomysł, że skoro istoty te mają prymitywny zmysł słuchu, możemy je przecież wykorzystać w roli modelu ułatwiającego zrozumienie podstaw słyszenia lub utraty słuchu. W tym sensie opisywane badania miałyby odniesienie do ludzi.
      Kałamarnice słyszą dzięki parzystym statocystom. Są to pęcherzyki zbudowane z komórek ze skierowanymi do wewnątrz wiciami. W środku znajduje się statolit (grudka węglanu wapnia), drażniący wypustki podczas ruchu. Wtedy generowany jest sygnał elektryczny, który powiadamia mózg, że zwierzę wykryło dźwięk. U ludzi kamyczki błędnikowe, nazywane inaczej otolitami, drażnią komórki rzęsate narządu Cortiego. Drgania są przetwarzane na sygnał elektryczny. Mając na uwadze te podobieństwa, Mooney i inni zastosowali podczas eksperymentów z kalmarami loligo test do badania słuchu u ludzkich niemowląt. Zwierzęta znieczulano chlorkiem magnezu, a później odtwarzano im przez głośniki różne dźwięki i mierzono reakcje.
      Płytko pod skórą Mooney wszczepiał kalmarom elektrody. Umieszczał je w pobliżu wyjścia nerwu słuchowego ze statocysty. Kolejną elektrodę mocował na grzbiecie, by mierzyć bazową aktywność elektryczną. Następnie zanurzał L. pealeii w płytkim zbiorniku. Przez głośniki emitowano dźwięki z szerokiego zakresu częstotliwości. Stosowano po ok. 1000 powtórzeń dla każdej częstotliwości. Wyliczenie na podstawie 1000 pomiarów średniej pozwoliło wyeliminować naturalny losowy szum elektryczny - wyrażany w miliwoltach - który po każdym zasłyszanym dźwięku rozchodzi się w ciele wzdłuż nerwu.
      Okazało się, że kalamar loligo długopłetwy słyszy podobnie jak wiele ryb, które nie mogą się pochwalić rozwiniętymi umiejętnościami w tym zakresie. Amerykanie sądzą, że kałamarnice stanowią pokarm tak wielu różnych zwierząt – od fok, przez walenie, po ptaki – bo nie wiedzą, że ktoś na nie poluje. Badanie tomografem komputerowym wykazało jednak, że dysponują bronią zupełnie innego rodzaju. Ich gęstość jest niemal taka sama jak wody (w wodzie skaner w ogóle ich "nie widział"), funkcjonują więc, jakby przez cały czas korzystały z czapki-niewidki. Posługujące się echolokacją drapieżniki ich nie wykrywają.
      Wbrew pozorom ustalenie, czy kalmar loligo długopłetwy słyszy, było naprawdę ważne. Chodzi bowiem o wzrastające zaśmiecenie podwodnych ekosystemów hałasem. W oceanie jest coraz więcej dźwięków. Komercyjne łodzie, wydobycie ropy i gazu... Wszystko to generuje dużo hałasu. Dopóki nie wiadomo, czy dane zwierzę słyszy, nie da się stwierdzić, czy zjawiska te będą na nie wpływać.
      W przyszłości Mooney zamierza ustalić, jak ważny jest słuch dla kałamarnic. Czy posługują się tym zmysłem w celach komunikacyjnych lub w czasie migracji. Biolog chce ustawić głośniki w różnych miejscach, by mierząc reakcje nerwów, stwierdzić, czy wyczuwają, gdzie znajduje się źródło dźwięków.
      Ludzie, ryby i wiele innych zwierząt wykorzystuje komórki rzęsate do wykrywania dźwięku i ruchu. Są podobne do tych u klamarów, ale występują też pewne różnice. To prawdopodobnie podstawowa struktura, która wyewoluowała miliony lat temu, lecz później kręgowce i bezkręgowce obrały inne ścieżki rozwoju. Dowiadując się więcej o słyszeniu kałamarnic i ich komórkach rzęsatych, możemy dociec, co jest ważne w ludzkim słyszeniu i komórkach czuciowych. Na razie to jednak spekulacje. Trzeba więc poczekać na wyniki dalszych studiów...
×
×
  • Create New...