Jak oszukują studenci
dodany przez
KopalniaWiedzy.pl, w Ciekawostki
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Podczas International Solid-State Circuits Conference uczeni z Uniwersytetu Stanforda zaprezentowali niewielki implant, zdolny do kontrolowania swej trasy w układzie krwionośnym człowieka. Ada Poon i jej koledzy stworzyli urządzenie zasilane za pomocą fal radiowych. Implant można więc wprowadzić do organizmu człowieka, kontrolować jego trasę i nie obawiać się, że np. wyczerpią się baterie.
Takie urządzenia mogą zrewolucjonizować technologię medyczną. Ich zastosowanie będzie bardzo szerokie - od diagnostyki do minimalnie inwazyjnej chirurgii - mówi Poon. Jej implant będzie mógł wędrować przez układ krwionośny, dostarczać leki do wyznaczonych miejsc, przeprowadzać analizy, a być może nawet rozbijać zakrzepy czy usuwać płytki miażdżycowe.
Naukowcy od kilkudziesięciu lat starają się skonstruować podobne urządzenie. Wraz z postępem technologicznym coraz większym problemem było zasilanie takich urządzeń. Sam implant można było zmniejszać, jednak zasilające go baterie pozostawały dość duże - stanowiąc często połowę implantu - i nie pozwalały mu na zbyt długą pracę. Potrafiliśmy znacząco zminiaturyzować części elektroniczne i mechaniczne, jednak miniaturyzacja źródła energii za tym nie nadążała. To z kolei ograniczało zastosowanie implantów i narażało chorego na ryzyko korozji baterii, ich awarii, nie mówiąc już o ryzyku związanym z ich wymianą - mówi profesor Teresa Meng, która również brała udział w tworzeniu implantu.
Urządzenie Poon wykorzystuje zewnętrzny nadajnik oraz odbiornik znajdujący się w implancie. Wysyłane przez nadajnik fale radiowe indukują w cewce odbiornika prąd. W ten sposób urządzenie jest bezprzewodowo zasilane.
Opis brzmi bardzo prosto, jednak naukowcy musieli pokonać poważne przeszkody. Uczeni od 50 lat myśleli o zasilaniu w ten sposób implantów, jednak przegrywali z... matematyką. Wszelkie wyliczenia pokazywały, że fale radiowe o wysokiej częstotliwości natychmiast rozpraszają się w tkankach, zanikając wykładniczo w miarę wnikania do organizmu. Fale o niskiej częstotliwości dobrze przenikają do tkanek, jednak wymagałyby zastosowania anteny o średnicy kilku centymetrów, a tak dużego urządzenia nie można by wprowadzić do układu krwionośnego. Skoro matematyka stwierdzała, że jest to niemożliwe, nikt nie próbował sprzeciwić się jej regułom.
Poon postanowiła jednak przyjrzeć się wykorzystywanym modelom matematycznym i odkryła, że większość uczonych podchodziła do problemu niewłaściwie. Zakładali bowiem, że ludzkie mięśnie, tłuszcz i kości są dobrymi przewodnikami, a zatem należy w modelach wykorzystać równania Maxwella. Uczona ze Stanforda inaczej potraktowała ludzką tkankę. Uznała ją za dielektryk, czyli niejako rodzaj izolatora. To oznacza, że nasze ciała słabo przewodzą prąd. Jednak nie przeszkadza to zbytnio falom radiowym. Poon odkryła też, że tkanka jest dielektrykiem, który charakteryzują niewielkie straty, co oznacza, że dochodzi do małych strat sygnału w miarę zagłębiania się w tkankę. Uczona wykorzystała różne modele matematyczne do zweryfikowania swoich spostrzeżeń i odkryła, że fale radiowe wnikają w organizm znacznie głębiej niż sądzono.
Gdy użyliśmy prostego modelu tkanki do przeliczenia tych wartości dla wysokich częstotliwości odkryliśmy, że optymalna częstotliwość potrzebna do bezprzewodowego zasilania wynosi około 1 GHz. Jest więc około 100-krotnie wyższa niż wcześniej sądzono - mówi Poon. To oznacza też, że antena odbiorcza w implancie może być 100-krotnie mniejsza. Okazało się, że jej powierzchnia może wynosić zaledwie 2 milimetry kwadratowe.
Uczona stworzyła implanty o dwóch różnych rodzajach napędu. Jeden przepuszcza prąd elektryczny przez płyn, w którym implant się porusza, tworząc siły popychające implant naprzód. Ten typ implantu może przemieszczać się z prędkością ponad pół centymetra na sekundę. Drugi typ napędu polega na ciągłym przełączaniu kierunku ruchu prądu, przez co implant przesuwa się podobnie do napędzanej wiosłami łódki.
Jest jeszcze sporo do udoskonalenia i czeka nas wiele pracy zanim takie urządzenia będzie można stosować w medycynie - mówi Poon.
-
przez KopalniaWiedzy.pl
Podczas International Solid-State Circuits Conference uczeni z Uniwersytetu Stanforda zaprezentowali niewielki implant, zdolny do kontrolowania swej trasy w układzie krwionośnym człowieka. Ada Poon i jej koledzy stworzyli urządzenie zasilane za pomocą fal radiowych. Implant można więc wprowadzić do organizmu człowieka, kontrolować jego trasę i nie obawiać się, że np. wyczerpią się baterie.
Takie urządzenia mogą zrewolucjonizować technologię medyczną. Ich zastosowanie będzie bardzo szerokie - od diagnostyki do minimalnie inwazyjnej chirurgii - mówi Poon. Jej implant będzie mógł wędrować przez układ krwionośny, dostarczać leki do wyznaczonych miejsc, przeprowadzać analizy, a być może nawet rozbijać zakrzepy czy usuwać płytki miażdżycowe.
Naukowcy od kilkudziesięciu lat starają się skonstruować podobne urządzenie. Wraz z postępem technologicznym coraz większym problemem było zasilanie takich urządzeń. Sam implant można było zmniejszać, jednak zasilające go baterie pozostawały dość duże - stanowiąc często połowę implantu - i nie pozwalały mu na zbyt długą pracę. Potrafiliśmy znacząco zminiaturyzować części elektroniczne i mechaniczne, jednak miniaturyzacja źródła energii za tym nie nadążała. To z kolei ograniczało zastosowanie implantów i narażało chorego na ryzyko korozji baterii, ich awarii, nie mówiąc już o ryzyku związanym z ich wymianą - mówi profesor Teresa Meng, która również brała udział w tworzeniu implantu.
Urządzenie Poon wykorzystuje zewnętrzny nadajnik oraz odbiornik znajdujący się w implancie. Wysyłane przez nadajnik fale radiowe indukują w cewce odbiornika prąd. W ten sposób urządzenie jest bezprzewodowo zasilane.
Opis brzmi bardzo prosto, jednak naukowcy musieli pokonać poważne przeszkody. Uczeni od 50 lat myśleli o zasilaniu w ten sposób implantów, jednak przegrywali z... matematyką. Wszelkie wyliczenia pokazywały, że fale radiowe o wysokiej częstotliwości natychmiast rozpraszają się w tkankach, zanikając wykładniczo w miarę wnikania do organizmu. Fale o niskiej częstotliwości dobrze przenikają do tkanek, jednak wymagałyby zastosowania anteny o średnicy kilku centymetrów, a tak dużego urządzenia nie można by wprowadzić do układu krwionośnego. Skoro matematyka stwierdzała, że jest to niemożliwe, nikt nie próbował sprzeciwić się jej regułom.
!RCOL
Poon postanowiła jednak przyjrzeć się wykorzystywanym modelom matematycznym i odkryła, że większość uczonych podchodziła do problemu niewłaściwie. Zakładali bowiem, że ludzkie mięśnie, tłuszcz i kości są dobrymi przewodnikami, a zatem należy w modelach wykorzystać równania Maxwella. Uczona ze Stanforda inaczej potraktowała ludzką tkankę. Uznała ją za dielektryk, czyli niejako rodzaj izolatora. To oznacza, że nasze ciała słabo przewodzą prąd. Jednak nie przeszkadza to zbytnio falom radiowym. Poon odkryła też, że tkanka jest dielektrykiem, który charakteryzują niewielkie straty, co oznacza, że dochodzi do małych strat sygnału w miarę zagłębiania się w tkankę. Uczona wykorzystała różne modele matematyczne do zweryfikowania swoich spostrzeżeń i odkryła, że fale radiowe wnikają w organizm znacznie głębiej niż sądzono.
Gdy użyliśmy prostego modelu tkanki do przeliczenia tych wartości dla wysokich częstotliwości odkryliśmy, że optymalna częstotliwość potrzebna do bezprzewodowego zasilania wynosi około 1 GHz. Jest więc około 100-krotnie wyższa niż wcześniej sądzono - mówi Poon. To oznacza też, że antena odbiorcza w implancie może być 100-krotnie mniejsza. Okazało się, że jej powierzchnia może wynosić zaledwie 2 milimetry kwadratowe.
Uczona stworzyła implanty o dwóch różnych rodzajach napędu. Jeden przepuszcza prąd elektryczny przez płyn, w którym implant się porusza, tworząc siły popychające implant naprzód. Ten typ implantu może przemieszczać się z prędkością ponad pół centymetra na sekundę. Drugi typ napędu polega na ciągłym przełączaniu kierunku ruchu prądu, przez co implant przesuwa się podobnie do napędzanej wiosłami łódki.
Jest jeszcze sporo do udoskonalenia i czeka nas wiele pracy zanim takie urządzenia będzie można stosować w medycynie - mówi Poon.
-
przez KopalniaWiedzy.pl
Miliony użytkowników witryny Full Tilt Poker były oszukiwane przez jej założycieli. Tak przynajmniej twierdzą autorzy pozwu cywilnego, który federalni prokuratorzy złożyli przed jednym z sądów.
Witryna Full Tilt Poker pobrała od swoich użytkowników 390 milionów dolarów. Pieniądze te miały być przechowywane na bezpiecznych kontach bankowych tak, by użytkownicy mogli z nich korzystać w czasie wirtualnego pokera. Tymczasem okazało się, że pieniądze przelano na konta właścicieli i zarządzających witryną. Są wśród nich najbardziej znani pokerzyści na świecie.
Full Tilt nie był legalną witryną pokerową, a piramidą finansową - stwierdził prokurator Preet S. Bharara, którego biuro złożyło pozew. Prokuratura poinformowała, że na ślad oszustwa trafiono badając inne sprawy związane z Full Tilt i dwiema innymi witrynami - Poker Stars i Absolute Poker. Wszystkie trzy firmy mają swoje siedziby poza USA. Full Tilt pochodzi z Irlandii. W związku z powyższym odkryciem w kwietniu bieżącego roku amerykańskim obywatelom zablokowano dostęp do witryn, tłumacząc, że naruszają one przepisy o defraudacji i praniu brudnych pieniędzy.
Użytkownicy Full Tilt, podobnie jak innych witryn dla pokerzystów, najpierw doładowywali pieniędzmi swoje wirtualne konta na witrynie. Wpłacone pieniądze, wraz z ewentualnymi wygranymi, miały być ciągle do ich dyspozycji i służyć do rozgrywek lub być wypłacane na żądanie. Gdy amerykańskie władze zablokowały dostęp do witryn, podpisano z nimi umowę, na podstawie której witryny miały zwrócić graczom ich pieniądze. Jednak w pewnym momencie witryna Full Tilt przestała dokonywać przelewów. Okazało się, że na kontach firmy skończyły się pieniądze, gdyż od kwietnia 2007 roku właściciele i zarządzający Full Tilt przelali na swoje prywatne konta 440 milionów dolarów.
Wśród osób, do których trafiły pieniądze graczy znajdują się pokerzyści ze światowej czołówki - Howard Lederer otrzymał podobno 42 miliony USD, Chris Ferguson wzgobacił się o 25 milionów i miał otrzymać kolejnych 60 milionów.
Wszystko wskazuje na to, że właściciele Full Tilt stworzyli olbrzymią piramidę finansową, a użytkowników uspokajali wypłatami na żądanie. Pokerzysta Greg Brooks, który od lat grał na Full Tilt powiedział, że ufał witrynie, gdyż regularnie odbierał wygrane przekraczające 100 000 USD. Teraz zdał sobie sprawę, że miliony, które zgromadził na kontach w Full Tilt najprawdopodobniej przepadły.
Prokuratorzy, którzy pozwali właścicieli i zarządzających Full Tilt żądają zwrotu nielegalnie zarobionych pieniędzy. Poszkodowani gracze będą mogli starać się o swoje pieniądze po zakończeniu procesu sądowego.
-
przez KopalniaWiedzy.pl
Naukowcy z Uniwersytetu Stanforda ogłosili koniec jednokierunkowej komunikacji radiowej. Opracowali oni urządzenie, które potrafi jednocześnie odbierać i wysyłać sygnały na tej samej częstotliwości.
W podręcznikach jest napisane, że tego się nie da zrobić. Nowy system zupełnie zmienia nasze strategie dotyczące projektowania sieci bezprzewodowych - mówi Philip Levis ze Stanforda.
Prace amerykańskich uczonych pozwolą na praktycznie natychmiastowe dwukrotne zwiększenie przepustowości sieci bezprzewodowych. Oczywiście każdy z nas wie, że rozmawiając przez telefon komórkowy możemy jednocześnie mówić i słuchać, jednak musimy pamiętać, że jest to możliwe dzięki zabiegom technicznym, które ze względu na wysokie koszty nie są stosowane w większości przypadków komunikacji radiowej.
Nowe radio jest dziełem trójki studentów - Jung Il Choia, Mayanka Jaina i Kannana Srinivasana, którym w pracach pomagali profesorowie Philip A. Levis i Sachin Katti. Główny problem, który trzeba było rozwiązać polegał na tym, że przychodzące sygnały radiowe są zagłuszane przez własną transmisję odbiornika. Stąd też dotychczasowa konieczność przełączania odbiorników radiowych w tryb nadawania i nasłuchiwania. Gdy radio przesyła sygnał, jest on miliardy razy silniejszy od sygnału, który może odebrać. To tak, jakby krzyczeć i jednocześnie próbować usłyszeć szept - stwierdza Levis. Młodzi naukowcy zdali sobie jednak sprawę z tego, że gdyby urządzenie potrafiło odfiltrować sygnał ze swojego własnego nadajnika, to mogłoby odebrać sygnał z innego urządzenia. Możesz to zrobić, gdyż nie słyszysz własnego wrzasku, a zatem możesz usłyszeć czyjś szept - wyjaśnia Levis.
Naukowcy skorzystali z faktu, że każdy nadajnik ma precyzyjne informacje o swoim własnym sygnale, zatem może go skutecznie filtrować.
Pierwsza demonstracja nowego systemu odbyła się przed kilkoma miesiącami przed grupą kilkuset inżynierów. Przekonała ona nawet największych niedowiarków, którzy do samego końca twierdzili, że jednoczesne nadawanie i odbieranie sygnału radiowego jest niemożliwe.
-
przez KopalniaWiedzy.pl
Podczas, kiedy grafika komputerowa coraz bardziej przypomina życie, naukowiec ze Stanford University poszedł w drugą stronę i zastąpił generowaną grafiką prawdziwym życiem i żywą postacią. Ten co prawda pewnie ustępuje inteligencją botom z Unreala, bohaterem gry jest bowiem znany ze szkolnej biologii - pantofelek (Paramecium caudatum).
Ten pospolity pierwotniak jest co prawda za mały, aby go obserwować gołym okiem, ale od czego współczesna technologia? W roli karty graficznej, a zarazem pola gry występuje pojemnik z pantofelkami, sterowanie odbywa się poprzez zmianę pola elektrycznego, albo wpuszczanie do pojemnika odpowiednich substancji chemicznych, co pozwala na kontrolowanie kierunku, w jakim pantofelek się przemieszcza. Pojemnik ustawiony jest pod kamerą sprzężoną z mikroskopem, obraz z kamery jest obrabiany przez komputer, który dodaje wirtualne elementy planszy i zlicza punkty. „Dostępne" w tej chwili gry to pantofelkowy Pac-Man (PAC-mecium), pong (Pond Pong), pinball (Biotic pinball) czy nawet piłka nożna (Ciliaball).
Zaskakujący z pozoru pomysł, na jaki wpadł Ingmar Riedel-Kruse nie jest dziełem wariata, ale projektem edukacyjnym - wciągająca gra (autor zapewnia, że takie właśnie są pantofelkowe gry) łatwiej dotrze do uczniów, niż sucha wiedza. A w najbliższej przyszłości ważne będzie, aby każdy dysponował podstawową wiedzą z biologii i biotechnologii - uważa Riedel-Kruse.
Innym zastosowaniem może być przeprowadzanie eksperymentów przy okazji grania, zaś w szczególności tzw. crowdsourcingu, czyli wykorzystywania do badań dużych rzesz amatorów.
Terminu ewentualnej dostępności gry na rynku nie podano.
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.