Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Mimo iż zachodzą w naszym organizmie miliony razy dziennie, podziały komórkowe są procesami prawdziwie niezwykłymi. Jedną z najbardziej zaskakujących cech tego zjawiska jest powstawanie komórek młodych i "świeżych" z komórek starych, nierzadko przeładowanych szkodliwymi cząsteczkami. Mechanizm zapewniający tę metaboliczną "czystość" odkryli naukowcy z Uniwersytetu w Göteborgu.

Autorami odkrycia są badacze z zespołu prof. Thomasa Nyströma. Na łamach prestiżowego czasopisma Cell opisali oni wyniki eksperymentu na komórkach drożdży, który może okazać się przełomowy dla naszego rozumienia kwestii starzenia się i ochrony przed nim. 

Badania przeprowadzono w związku z pozornym paradoksem, do jakiego dochodzi podczas podziału komórkowego. Nikt nie wiedział bowiem, jak to możliwe, że powstająca komórka potomna otrzymuje własną kopię genomu, cytoplazmę oraz komplet struktur wewnątrzkomórkowych zwanych organellami, lecz jednocześnie pozostaje wolna od wadliwych elementów zgromadzonych za życia komórki matczynej. 

Jak zaobserwowali badacze z zespołu prof. Nyströma, dzieje się tak, ponieważ w komórkach istnieje specjalny system transportu szkodliwych produktów metabolizmu (na czele z kompleksami wadliwych białek) podczas podziału komórkowego.

Cząsteczkami odpowiedzialnymi za ten proces okazały się białka z grupy aktyn, biorące udział m.in. w wielu innych typach transportu wewnątrzkomórkowego. W przypadku segregacji zachodzącej podczas podziału komórkowego z włóknami aktynowymi współpracuje inna cząsteczka, zwana SIR2, która - wszystko na to wskazuje - odgrywa kluczową rolę w formowaniu się nici aktynowych pozwalających komórce na "oczyszczenie się" pod koniec podziału komórkowego. 

Co ciekawe, już we wcześniejszych badaniach stwierdzono, że komórki wielu organizmów wytwarzające zwiększoną ilość SIR2 żyją znacznie dłużej od swoich normalnych krewniaków. Badania przeprowadzone przez szwedzkich uczonych są jednak pierwszymi, których rezultaty wyjaśniają mechanizm "odmładzającego" działania tej molekuły.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

A Gdyby tak była już era procesorów grafitowych bądź lepiej era komputerów kwantowych to z ich mocą obliczeniową dało by się skanować cało ludzkie w czasie rzeczywistym (liczbę, lokalizacje, własności, funkcję, skład itp.). Potem potrzeba  by było urządzenia(np. nonoroboty) które było by wstanie wymusić na komórce procesy naprawcze, tworząc komórki potomne. Jeżeli po takim procesie pozostają jakieś zbędne produkty to były by one usuwane przez nanoroboty(chodź natura/ewolucja zawszę tworzy potrzebne elementy w celu oszczędności energii). Stosując tą metodę można by uzyskać (długo wieczność) walczyć skutecznie z rakiem posiadając wiedzę na temat choroby(elementów które są w komórce chorobo twórcze, i można by ingerować w komórki/ek chorych, w szybkim tempie bez konieczności operacji a poprzez informacje z baz danych i wyników badań w poprzednich latach pacjenta przed choroby w celu utrzymania zgodności genetycznej komórek z innymi komórkami ewentualnie wyłączając złe geny, sprzyjające rozwoju choroby).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Coś to dla mnie podejrzane ...

Skoro komórki mają taki fajowy system rozpoznawania i aktywnego transportu tych metabolicznych śmieci, dlaczego nie mogą tego po prostu na bieżąco 'wyrzucać do śmietnika' - na przykład lizosomu?

Oczyściły by cytoplazmę, odzyskując trochę energii...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nie jestem specjalistą, więc tylko zgaduję - za duży wydatek energetyczny względem korzyści ?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jarku, osobiście obstawiam, że dzieje się tak dlatego, że tego typu agregaty białkowe są często b. oporne na enzymatyczną proteolizę. Ponieważ nie da się ich rozłożyć, komórka stara się je chociaż "odłożyć" w bezpieczne miejsce.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Serio zdarzają się takie zbitki białek, że żadne enzymy trawienne nie są w stanie tego ugryźć...? ;>

Ale rzeczywiście - jeśli te komórki i tak są już spisane na straty, także przez uszkodzenia genetyczne, można je całe użyć jako tego śmietnika ... ale i tak coś będzie musiało to przetrawić ... jakiś makrofag we własnym lizosomie? Ewentualnie trafi do układu wydalniczego - pewnie nerek?

 

Ale chyba ogólnie komórki by efektywniej działały gdyby chociaż pakowały(oddzielały) takie śmieci - skoro już mają tak selektywne mechanizmy (np. markowanie ubikwityną) ... np. wyobrażam sobie białka w błonie lizosomów które przyczepiają zamarkowane białka i aktywnie je transportują do środka. Teraz takie lizosomy powinny się 'starzeć' - nie dostają nowych takich białek błonowych i gdy większość się zużyje znaczy się że w środku są już praktycznie tylko nietrawialne śmieci i trzeba teraz np. aktywnie wytransportować to na zewnątrz komórki, obklejając dodatkowo warstwą własnej błony i adresując do nerek ... ? :D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Serio zdarzają się takie zbitki białek, że żadne enzymy trawienne nie są w stanie tego ugryźć...? ;>

Jakaś tam proteoliza pewnie zachodzi, ale spodziewam się, że na skalę znacznie niższą od tempa narastania tych złogów.

 

Działanie makrofagów to ostateczność, bo przeważnie komórka próbuje wcześniej przejść apoptozę (i dopiero potem fagocytozę). Ale bywa i tak, że komórka świruje na tyle, że sprzątają ją np. komórki NK albo swoiste cytotoksyczne limfocyty T. Ale układ wydalniczy raczej się w to nie miesza (a przynajmniej nie powinien, bo grozi to katastrofą - nawet wolne białka potrafią uszkodzić nerki, a co tu mówić o całych komórkach.

Ale chyba ogólnie komórki by efektywniej działały gdyby chociaż pakowały(oddzielały) takie śmieci

I tak robią, ale tylko tak długo, jak wyrabiają się z tym. Zwróć uwagę, że sama definicja starzenia zakłada, że organ/komórka/organizm zaczyna coraz gorzej wypełniać swoje funkcje, przez co wzrasta prawdopodobieństwo jego śmierci.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

No rzeczywiście właśnie skojarzyłem (jako matematyk :D ), że jak w moczu jest białko to znaczy że coś nie tak...

Czyli ostatecznie te białka coś musi strawić ... w takim razie wnioskuję że podział komórki to 'zostawianie ich na tonącym statku' ... czyli że normalnie komórka sobie radzi ze śmieciami, a to oddzielenie jest istotne tylko dla podziału ostatniej szansy ... tyle że wtedy jest też spore chyba ryzyko że komórka potomna będzie uszkodzona ... choć może nie jest tak źle bo te metabolity nie dostają się do jądra ...

Oj dobra - brakuje mi podstaw ;P Pozdrawiam ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Mimo wszystko, Jarku, podziwiam Twoje zainteresowanie biologią i chęć poszerzania wiedzy :D Naprawdę bardzo mi się to podoba, że zadajesz takie ciekawe pytania, przy których nawet ja pod koniec studiów nieraz muszę się solidnie zastanowić albo poszukać w źródełkach. Gratuluję dociekliwości ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Saudyjska rodzina królewska powołała do życia niedochodową organizację o nazwie Hevolution Foundation, która ma przeznaczać rocznie do 1 miliarda USD na badania nad biologią starzenia się i znalezienie sposobu na wydłużenie ludzkiego życia w zdrowiu. Fundacja może więc stać się największym na świecie sponsorem badań nad przyczynami starzenia się i poszukiwaniem środków w celu spowolnienia tego procesu.
      Na czele organizacji stanie Mehmood Khan, były endokrynolog z Mayo Clinic i były główny naukowiec firmy PepsiCo. Jego zdaniem proces starzenia się to jeden z największych problemów dla ludzkości. Popularna wśród niektórych naukowców hipoteza mówi, że jeśli udałoby się spowolnić starzenie się, moglibyśmy odsunąć w czasie pojawienie się wielu chorób, a ludzie dłużej cieszyliby się zdrowym życiem. Dlatego też Hevolution Foundation będzie przyznawała granty zarówno na podstawowe badania na przyczynami starzenia się, jak i na poszukiwanie leków je opóźniających.
      Khan mów, że organizacja otrzymała bezterminowe zezwolenia na wydawanie do 1 miliarda USD rocznie i będzie miała prawo do zakupu udziałów w firmach biotechnologicznych. Dla porównania, amerykański National Institute of Aging, który wspiera badania nad biologią starzenia się, przeznacza na ten cel 325 milionów USD rocznie.
      Na razie nie wiadomo, jakie projekty będzie wspierała saudyjska fundacja. Nieoficjalnie mówi się o ustanowieniu nagrody X Prize o wartości 100 milionów USD za opracowanie technologii odwrócenia procesu starzenia się. Organizacja miała też podpisać umowę wstępną nad finansowanie badań wpływu metforminy na starszych ludzi. Projekt badawczy o nazwie TAME (Targeting Aging with Metformin) ma być największym na świecie badaniem leku na starzenie się. Jest on jednak od wielu lat odkładany, gdyż dotychczas nie znalazł się nikt chętny, by go sfinansować.
      Nir Barzilai, pomysłodawca TAME i badacz w Albert Einstein School of Medicine w Nowym Jorku powiedział, że saudyjska fundacja zgodziła się na pokrycie 1/3 kosztów projektu. W jego ramach kilkanaście tysięcy starszych osób przyjmowałoby metforminę. Badacze chcą przetestować hipotezę mówiącą, że niektóre leki, zmieniając procesy komórkowe związane ze starzeniem się, mogą opóźnić pojawianie się różnych chorób, w tym nowotworów czy choroby Alzheimera.
      Powołanie fundacji jest najprawdopodobniej związane z obawami władz Arabii Saudyjskiej o przyszłość. Co prawda kraj ma dość młodą populację, której mediana wieku wynosi około 31 lat (w Polsce jest to ok. 10 lat więcej), jednak saudyjskie społeczeństwo – jak stwierdzają przedstawiciele Hevolution Foundation – starzeje się szybciej biologicznie niż chronologicznie. Szybko bogacące się społeczeństwo zmniejszyło aktywność fizyczną, zaczęło źle się odżywiać, czego skutkiem jest eksplozja otyłości i cukrzycy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Starzenie się to złożony, wieloetapowy proces, który jest trudno opisać biorąc po uwagę jedną tylko zmienną, jak np. wiek. Międzynarodowy zespół naukowdy informuje na łamach Nature Communications o utworzeniu zmiennej o nazwie wskaźnik dynamicznego stanu organizmu (DOSI – dynamic organismal state indicator). To wskaźnik obliczeniowy, który ma ułatwiać systematyczne badanie procesu starzenia oraz pomóc w opracowaniu biomarkerów starzenia się.
      DOSI bierze pod uwagę m.in. dynamikę procesów biologicznych, tempo rekonwalescencji po chorobach czy urazach, rosnącą z wiekiem podatność na choroby i zwiększające się ryzyko zgonu. Twórcy wskaźnika – naukowcy z singapurskiej firmy biotechnologicznej Gero, z Roswell Park Comprehensive Cancer Center w USA oraz z trzech rosyjskich instytucji badawczych – wykorzystali następnie dane z wielkiej bazy CBC tworzonej przez amerykańskie CDC w ramach programu National Health And Nutritional Examination Surveys oraz dane z UK Biobank.
      Wcześniejsze badania wielokrotnie wykazywały, że zdrowy tryb życia, porzucenie niezdrowych zwyczajów, wydłuża ludzkie życie. Dotychczas trudno było jednak ocenić wpływ w czasie poszczególnych działań tego typu.
      Teraz dzięki wykorzystaniu DOSI badacze stwierdzili, że – jak się można było spodziewać – z wiekiem spada zdolność organizmu do regeneracji. O ile u zdrowego 40-latka całkowita regeneracja po chorobie czy urazie trwa około 2 tygodni, to u 80-latka okres ten wydłuża się do 6 tygodni. Spostrzeżenia te potwierdzono za pomocą różnych badań krwi oraz pomiarów aktywności fizycznej.
      Uczeni ekstrapolowali te wyniki w czasie i wykazali, że przeciętny człowiek, który nie cierpi na choroby przewlekłe, całkowicie utraci zdolność regeneracji organizmu w wieku 120–150 lat. To jest zatem maksymalna granica długości ludzkiego życia.
      To właśnie ta utrata zdolności do regeneracji może wyjaśniać, dlaczego nie obserwujemy, by ciągle były bite kolejne rekordy długości życia, mimo że rośnie średnia długość życia całych społeczeństw. Utrata możliwości regeneracji dotyczy bowiem nawet najzdrowszych i najlepiej starzejących się osób.
      Badania wykazały, że nie jest możliwe zwiększenie maksymalnej długości życia poprzez zapobieganie czy leczenie chorób. Aby tego dokonać, musielibyśmy umieć manipulować procesem starzenia się, który prowadzi do utraty zdolności do regeneracji.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Materiały plastikowe znajdują się w użyciu już od kilku dziesięcioleci. Poszukując nowych rozwiązań, producenci napotykają jednak na poważne ograniczenie: niemożność bezpośredniego obserwowania wpływu mikroskopowej budowy materiału na właściwości mechaniczne. Cząsteczki syntetycznych polimerów są zwyczajnie zbyt małe, czego nie można już powiedzieć o biopolimerach, np. włóknach mięśniowych. To właśnie zainspirowało specjalistów z zespołu profesora Andreasa Bauscha z Technische Universität München (TUM).
      Gdy film polietylenowy jest silnie rozciągany, staje się w wyniku reorganizacji łańcuchów polimerowych bardziej odporny na rozrywanie, a to ważna cecha w przypadku plastikowych toreb na zakupy. Pod wpływem częstych naprężeń niektóre elastyczne polimery - gumy napełnione - stają się natomiast bardziej miękkie. Zjawisko to zostało nazwane efektem Mullinsa (od nazwiska swojego odkrywcy Leonarda Mullinsa). Dotąd nie było jednak wiadomo, co dokładnie dzieje się z łańcuchami polimerowymi poddanymi działaniu naprężeń, a przecież zrozumienie procesów z poziomu molekularnego pozwoliłoby wynalazcom nowych plastików oszczędzić dużo czasu i pieniędzy.
      Ekipa Bauscha wykorzystała białko kurczliwe mięśni, a mianowicie aktynę w formie włókienkowej (aktynę F). Utworzono nową sieć polimerową. Co ważne, filamenty aktynowe są widoczne pod konfokalnym mikroskopem fluorescencyjnym, dzięki czemu po przyłożeniu do materiału naprężeń można było obserwować ruchy pojedynczych włókien. Korzystając z reometru, który pozwala określić właściwości mechaniczne materiału, a także ze wspomnianego mikroskopu, Niemcy widzieli zachowanie sieci filamentów aktynowych podczas mechanicznej deformacji i mogli je sfilmować w trójwymiarze.
      W ten sposób naukowcy uzyskali modelowy system, który rzucił nieco światła na procesy molekularne leżące u podstaw efektu Mullinsa, a także zjawiska odwrotnego, czyli twardnienia materiały pod wpływem powtarzających się naprężeń. Powodem zmiany właściwości mechanicznych była, jak można się domyślić, rozległa reorganizacja sieci.
    • przez KopalniaWiedzy.pl
      Wg brytyjskich naukowców, liczne pieprzyki oznaczają młodszą skórę i większą gęstość kości. Komórki osób, które mają ich dużo, mają pewne właściwości związane z częstszą samoodnową. Niestety, kosztem wydaje się wyższy wskaźnik nowotworów – zarówno skóry, jak i innych rejonów organizmu, np. piersi.
      Większość ludzi ma od 30 do 40 pieprzyków, ale u niektórych można się doliczyć nawet 600. Specjaliści z Królewskiego College'u Londyńskiego oraz dr Veronique Bataille, dermatolog z Hemel Hempstead General Hospital, poszukiwali związków między liczbą pieprzyków a innymi cechami fizycznymi.
      Na początku Bataille stwierdziła, że ludzie z wieloma pieprzykami wydają się mniej podatni na wystąpienie różnych oznak starzenia skóry, np. zmarszczek. Najnowsze studium z 1200 bliźniętami sugeruje, że u tych samych osób z wiekiem w mniejszym stopniu obniża się gęstość kości. Tym oto sposobem rzadziej przydarzają im się osteoporotyczne złamania. Badanie pokazało, że u jednostek z ponad 100 pieprzykami prawdopodobieństwo wystąpienia osteoporozy jest o połowę niższe niż u ochotników z 25 i mniej pieprzykami.
      Na razie nie wiadomo, czemu się tak dzieje, ale akademicy zauważyli, że telomery osób z dużą liczbą pieprzyków są dłuższe. Twory te znajdują się na końcówkach chromosomów. Ulegają skróceniu przy każdym podziale komórkowym. Im dłuższy więc telomer, tym więcej podziałów może przejść komórka. Jak wiemy, wiąże się to jednak z pewnymi zagrożeniami.
      Dr Bataille uważa, że pieprzyki stanowią widzialny produkt (uboczny) układu kontrolującego starzenie organizmu. Działa on na zasadzie targu między długowiecznością a ryzykiem wystąpienia nowotworów.
    • przez KopalniaWiedzy.pl
      Ivana Božić, doktorantka z Uniwersytetu Harvarda, stworzyła model matematyczny, który pokazuje, że pojedyncza mutacja nie wystarczy, by sprowokować wzrost nowotworu. Średnio zwiększa ona tempo podziałów komórkowych o zaledwie 0,4%. Oznacza to, że [...] konieczna jest wolna, stała akumulacja wielu mutacji w jednej komórce na przestrzeni lat.
      Szefowa studium, którego wyniki ukazały się w piśmie Proceedings of the National Academy of Sciences (PNAS), podkreśla, że skoro do zezłośliwienia zmiany potrzeba wielu zachodzących na przestrzeni dłuższego czasu mutacji, potwierdzają się obserwacje epidemiologów i klinicystów. Wg nich, w przypadku licznych nowotworów rzucają się bowiem w oczy heterogenność (niejednorodność) i losowość. Mimo że dane pochodzące z sekwencjonowania genomu nowotworów są pouczające, uzgodnienie ich z obserwacjami epidemiologicznymi i klinicznymi stanowi spore wyzwanie. Nasz nowy model matematyczny zaczyna łagodzić ten rozdźwięk.
      Božić wpisuje się w popularny ostatnio nurt badań, których autorzy próbują różnicować dwa typy mutacji w guzach: kierownicze i tzw. pasażerskie (te pierwsze mają decydujący wpływ na proces nowotworzenia, a drugie jedynie się dokładają). Naukowcy odkryli, że w większości guzów litych w kodujących genach występuje od 40 do 100 mutacji, choć średnio tylko od 5 do 15 z nich ma rzeczywisty wpływ na wzrost nowotworu. Pozostałe wiążą się jakoś z mutacjami napędzającymi, ale nie przynoszą guzowi bezpośrednich korzyści.
      Guzy zaczynają się rozwijać przy pierwszej mutacji dającej przewagę nad innymi komórkami, pozwalając im rosnąć nawet minimalnie tylko szybciej od sąsiadów. Gdy mutacje kierownicze powoli akumulują się w danej komórce, dochodzi do przyspieszenia procesu – coraz szybszy podział komórkowy skutkuje coraz szybszym pojawianiem się mutacji kierowniczych. Wszystko wskazuje na to, że czas upływający między mutacjami kierowniczymi w tworzącym się guzie jest kluczowy dla losów pacjenta. Ustaliliśmy np., że jednostka, u której przez 20 lat nie dochodzi do drugiej mutacji kierowniczej w tej samej komórce, może nigdy nie doświadczyć wzrostu guza do masy większej niż kilka tysięcznych grama. Jeśli jednak druga mutacja kierownicza nastąpi w ciągu 5 lat, w ciągu 25 lat może się rozwinąć guz ważący kilkaset gramów. Wyliczenia te pokrywają się z obserwacjami onkologów, że potrzeba ok. 30 lub więcej lat, by z początkowych komórek urósł nowotwór.
      Zespół Božić przetestował trafność modelu na dwóch dobrze zbadanych nowotworach: glejaku wielopostaciowym i gruczolakoraku trzustki. Naukowcy zaprezentowali równanie, które pozwala opomiarować korzyści wynikające z każdej mutacji kierowniczej i ustalić, ile ich występuje w danym guzie.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...