-
Similar Content
-
By KopalniaWiedzy.pl
Materiały plastikowe znajdują się w użyciu już od kilku dziesięcioleci. Poszukując nowych rozwiązań, producenci napotykają jednak na poważne ograniczenie: niemożność bezpośredniego obserwowania wpływu mikroskopowej budowy materiału na właściwości mechaniczne. Cząsteczki syntetycznych polimerów są zwyczajnie zbyt małe, czego nie można już powiedzieć o biopolimerach, np. włóknach mięśniowych. To właśnie zainspirowało specjalistów z zespołu profesora Andreasa Bauscha z Technische Universität München (TUM).
Gdy film polietylenowy jest silnie rozciągany, staje się w wyniku reorganizacji łańcuchów polimerowych bardziej odporny na rozrywanie, a to ważna cecha w przypadku plastikowych toreb na zakupy. Pod wpływem częstych naprężeń niektóre elastyczne polimery - gumy napełnione - stają się natomiast bardziej miękkie. Zjawisko to zostało nazwane efektem Mullinsa (od nazwiska swojego odkrywcy Leonarda Mullinsa). Dotąd nie było jednak wiadomo, co dokładnie dzieje się z łańcuchami polimerowymi poddanymi działaniu naprężeń, a przecież zrozumienie procesów z poziomu molekularnego pozwoliłoby wynalazcom nowych plastików oszczędzić dużo czasu i pieniędzy.
Ekipa Bauscha wykorzystała białko kurczliwe mięśni, a mianowicie aktynę w formie włókienkowej (aktynę F). Utworzono nową sieć polimerową. Co ważne, filamenty aktynowe są widoczne pod konfokalnym mikroskopem fluorescencyjnym, dzięki czemu po przyłożeniu do materiału naprężeń można było obserwować ruchy pojedynczych włókien. Korzystając z reometru, który pozwala określić właściwości mechaniczne materiału, a także ze wspomnianego mikroskopu, Niemcy widzieli zachowanie sieci filamentów aktynowych podczas mechanicznej deformacji i mogli je sfilmować w trójwymiarze.
W ten sposób naukowcy uzyskali modelowy system, który rzucił nieco światła na procesy molekularne leżące u podstaw efektu Mullinsa, a także zjawiska odwrotnego, czyli twardnienia materiały pod wpływem powtarzających się naprężeń. Powodem zmiany właściwości mechanicznych była, jak można się domyślić, rozległa reorganizacja sieci.
-
By KopalniaWiedzy.pl
Wg brytyjskich naukowców, liczne pieprzyki oznaczają młodszą skórę i większą gęstość kości. Komórki osób, które mają ich dużo, mają pewne właściwości związane z częstszą samoodnową. Niestety, kosztem wydaje się wyższy wskaźnik nowotworów – zarówno skóry, jak i innych rejonów organizmu, np. piersi.
Większość ludzi ma od 30 do 40 pieprzyków, ale u niektórych można się doliczyć nawet 600. Specjaliści z Królewskiego College'u Londyńskiego oraz dr Veronique Bataille, dermatolog z Hemel Hempstead General Hospital, poszukiwali związków między liczbą pieprzyków a innymi cechami fizycznymi.
Na początku Bataille stwierdziła, że ludzie z wieloma pieprzykami wydają się mniej podatni na wystąpienie różnych oznak starzenia skóry, np. zmarszczek. Najnowsze studium z 1200 bliźniętami sugeruje, że u tych samych osób z wiekiem w mniejszym stopniu obniża się gęstość kości. Tym oto sposobem rzadziej przydarzają im się osteoporotyczne złamania. Badanie pokazało, że u jednostek z ponad 100 pieprzykami prawdopodobieństwo wystąpienia osteoporozy jest o połowę niższe niż u ochotników z 25 i mniej pieprzykami.
Na razie nie wiadomo, czemu się tak dzieje, ale akademicy zauważyli, że telomery osób z dużą liczbą pieprzyków są dłuższe. Twory te znajdują się na końcówkach chromosomów. Ulegają skróceniu przy każdym podziale komórkowym. Im dłuższy więc telomer, tym więcej podziałów może przejść komórka. Jak wiemy, wiąże się to jednak z pewnymi zagrożeniami.
Dr Bataille uważa, że pieprzyki stanowią widzialny produkt (uboczny) układu kontrolującego starzenie organizmu. Działa on na zasadzie targu między długowiecznością a ryzykiem wystąpienia nowotworów.
-
By KopalniaWiedzy.pl
Ivana Božić, doktorantka z Uniwersytetu Harvarda, stworzyła model matematyczny, który pokazuje, że pojedyncza mutacja nie wystarczy, by sprowokować wzrost nowotworu. Średnio zwiększa ona tempo podziałów komórkowych o zaledwie 0,4%. Oznacza to, że [...] konieczna jest wolna, stała akumulacja wielu mutacji w jednej komórce na przestrzeni lat.
Szefowa studium, którego wyniki ukazały się w piśmie Proceedings of the National Academy of Sciences (PNAS), podkreśla, że skoro do zezłośliwienia zmiany potrzeba wielu zachodzących na przestrzeni dłuższego czasu mutacji, potwierdzają się obserwacje epidemiologów i klinicystów. Wg nich, w przypadku licznych nowotworów rzucają się bowiem w oczy heterogenność (niejednorodność) i losowość. Mimo że dane pochodzące z sekwencjonowania genomu nowotworów są pouczające, uzgodnienie ich z obserwacjami epidemiologicznymi i klinicznymi stanowi spore wyzwanie. Nasz nowy model matematyczny zaczyna łagodzić ten rozdźwięk.
Božić wpisuje się w popularny ostatnio nurt badań, których autorzy próbują różnicować dwa typy mutacji w guzach: kierownicze i tzw. pasażerskie (te pierwsze mają decydujący wpływ na proces nowotworzenia, a drugie jedynie się dokładają). Naukowcy odkryli, że w większości guzów litych w kodujących genach występuje od 40 do 100 mutacji, choć średnio tylko od 5 do 15 z nich ma rzeczywisty wpływ na wzrost nowotworu. Pozostałe wiążą się jakoś z mutacjami napędzającymi, ale nie przynoszą guzowi bezpośrednich korzyści.
Guzy zaczynają się rozwijać przy pierwszej mutacji dającej przewagę nad innymi komórkami, pozwalając im rosnąć nawet minimalnie tylko szybciej od sąsiadów. Gdy mutacje kierownicze powoli akumulują się w danej komórce, dochodzi do przyspieszenia procesu – coraz szybszy podział komórkowy skutkuje coraz szybszym pojawianiem się mutacji kierowniczych. Wszystko wskazuje na to, że czas upływający między mutacjami kierowniczymi w tworzącym się guzie jest kluczowy dla losów pacjenta. Ustaliliśmy np., że jednostka, u której przez 20 lat nie dochodzi do drugiej mutacji kierowniczej w tej samej komórce, może nigdy nie doświadczyć wzrostu guza do masy większej niż kilka tysięcznych grama. Jeśli jednak druga mutacja kierownicza nastąpi w ciągu 5 lat, w ciągu 25 lat może się rozwinąć guz ważący kilkaset gramów. Wyliczenia te pokrywają się z obserwacjami onkologów, że potrzeba ok. 30 lub więcej lat, by z początkowych komórek urósł nowotwór.
Zespół Božić przetestował trafność modelu na dwóch dobrze zbadanych nowotworach: glejaku wielopostaciowym i gruczolakoraku trzustki. Naukowcy zaprezentowali równanie, które pozwala opomiarować korzyści wynikające z każdej mutacji kierowniczej i ustalić, ile ich występuje w danym guzie.
-
By KopalniaWiedzy.pl
By dawać przerzuty, komórki nowotworowe potrzebują wszystkich 3 składowych cytoszkieletu: filamentów pośrednich, miktotubul oraz filamentów aktynowych.
Danijela Vignjević i jej zespół z Instytutu Curie w Paryżu wyjaśniają, że w warstwie nabłonka komórka nowotworowa jest uwięziona, zanim nie uda jej się sforsować błony podstawnej - substancji międzykomórkowej oddzielającej komórki nabłonka od tkanki łącznej. By do tego doprowadzić, wydziela więc rozpuszczające membrana basalis enzymy, gromadzone w wypustkach inwazyjnych, które można by po polsku nazwać inwadopodiami (od ang. invadopodia). Przed badaniami Vignjević nie było wiadomo, jak podczas tego procesu współpracują ze sobą różne składowe cytoszkieletu.
Okazało się, że komórka nowotworowa uwalnia się w 3 etapach. Na początku w błonę podstawną wwiercają się grube wypustki. Później ulegają one wydłużeniu i zaczynają wyglądać jak prawdziwe inwadopodia. Za nimi podąża reszta komórki. Wygląda to jak powolne pełznięcie w stylu ślimaka czy gąsienicy. W hodowlach Francuzi zaobserwowali, że w wypustkach znajdują się wiązki oraz siateczki z aktyny. Są one niezbędne do utworzenia i wzrostu inwadopodiów, z kolei wydłużanie nie zaszłoby bez filamentów pośrednich i mikrotubul.
Wiązki aktyny wypychają wypustkę do przodu, a siateczka z tej samej substancji stabilizuje ją podczas wzrostu. Gdy inwadopodia osiągają długość 5 mikronów, do gry wkraczają pozostałe elementy cytoszkieletu: mikrotubule dostarczają do koniuszka enzymy, a filamenty pośrednie działają jak spinające wszystko w całość klamry.
-
By KopalniaWiedzy.pl
W organizmie człowieka wiele procesów życiowych, m.in. sen, produkcja hormonów czy regulacja temperatury ciała, przebiega w rytmie dobowym. Te genetycznie zaprogramowane wzorce działają nawet pod nieobecność następujących po sobie dni i nocy, a występują u niemal wszystkich organizmów. Naukowcy z MIT-u i Uniwersytetu Kalifornijskiego w San Diego (UCSD) odkryli ostatnio, że u sinic rytmy dobowe określają tempo podziałów komórkowych.
Sinice, zwane również cyjanobakteriami, prowadzą fotosyntezę, dlatego są bardziej aktywnie w ciągu dnia, a nocą przechodzą fazę spoczynku.
U organizmów wielokomórkowych podział komórek jest niezbędny dla odnowy i naprawy uszkodzeń, ale niekontrolowane namnażanie prowadzi do nowotworów. Z tego powodu zrozumienie, jak komórki się dzielą, ma fundamentalne znaczenie – tłumaczy Susan Golden, profesor biologii molekularnej z UCSD.
Dwanaście lat temu Golden i inni zidentyfikowali u sinic 3 białka regulujące zegar biologiczny. Istniały pewne dowody, że rytm okołodobowy kontroluje podziały komórkowe, ale nie było wiadomo, jaki dokładnie charakter ma ta zależność. Obecnie zespół pracujący pod kierownictwem prof. Alexandra van Oudenaardena z MIT-u stwierdził, że w stałym świetle o umiarkowanym natężeniu cyjanobakterie dzielą się średnio raz dziennie, a podziały mają miejsce głównie w połowie 24-godzinnego cyklu. Naukowcom udało się przyspieszyć dzielenie, wzmagając intensywność oświetlenia. W takich warunkach komórki nasilały fotosyntezę, co pozwalało im uzyskać większą ilość energii. Zaczynały się dzielić częściej, ale nadal w powiązaniu z zegarem biologicznym: w jednej czwartej i trzech czwartych cyklu. Amerykanie zauważyli, że we wszystkich warunkach po ok. 19 godzinach sinice wchodziły w fazę spoczynku.
Akademicy przez tydzień śledzili rytmy dobowe pojedynczych komórek. Udało się to dzięki oznaczeniu protein zarządzających zegarem biologicznym żółtym fluorescencyjnym białkiem. W ten sposób w 24-godzinnym cyklu można było ustalić pozycję każdej komórki. Dodatkowo co 40 min komórki fotografowano, naukowcy wiedzieli więc, kiedy się dzieliły.
Technika monitorowania pojedynczych komórek pozwoli w przyszłości ujawnić związki między rytmem okołodobowym a innymi cyklicznymi procesami komórkowymi, np. metabolizmem. Prof. Golden planuje dalsze eksperymenty na sinicach, jednak van Oudenaarden wspomina także o drożdżach i komórkach ludzkich. Wcześniej profesorski tandem opisał mechanizm molekularny, za pośrednictwem którego białka zegara biologicznego cyjanobakterii (KaiA, KaiB i KaiC) kontrolują cykl komórkowy. Okazało się, że regulują one aktywność czwartego białka FtsZ, nie dopuszczając do jego przemieszczania w okolice płaszczyzny równikowej i utworzenia pierścienia.
-
-
Recently Browsing 0 members
No registered users viewing this page.