Ze starej w młodą
dodany przez
KopalniaWiedzy.pl, w Nauki przyrodnicze
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Saudyjska rodzina królewska powołała do życia niedochodową organizację o nazwie Hevolution Foundation, która ma przeznaczać rocznie do 1 miliarda USD na badania nad biologią starzenia się i znalezienie sposobu na wydłużenie ludzkiego życia w zdrowiu. Fundacja może więc stać się największym na świecie sponsorem badań nad przyczynami starzenia się i poszukiwaniem środków w celu spowolnienia tego procesu.
Na czele organizacji stanie Mehmood Khan, były endokrynolog z Mayo Clinic i były główny naukowiec firmy PepsiCo. Jego zdaniem proces starzenia się to jeden z największych problemów dla ludzkości. Popularna wśród niektórych naukowców hipoteza mówi, że jeśli udałoby się spowolnić starzenie się, moglibyśmy odsunąć w czasie pojawienie się wielu chorób, a ludzie dłużej cieszyliby się zdrowym życiem. Dlatego też Hevolution Foundation będzie przyznawała granty zarówno na podstawowe badania na przyczynami starzenia się, jak i na poszukiwanie leków je opóźniających.
Khan mów, że organizacja otrzymała bezterminowe zezwolenia na wydawanie do 1 miliarda USD rocznie i będzie miała prawo do zakupu udziałów w firmach biotechnologicznych. Dla porównania, amerykański National Institute of Aging, który wspiera badania nad biologią starzenia się, przeznacza na ten cel 325 milionów USD rocznie.
Na razie nie wiadomo, jakie projekty będzie wspierała saudyjska fundacja. Nieoficjalnie mówi się o ustanowieniu nagrody X Prize o wartości 100 milionów USD za opracowanie technologii odwrócenia procesu starzenia się. Organizacja miała też podpisać umowę wstępną nad finansowanie badań wpływu metforminy na starszych ludzi. Projekt badawczy o nazwie TAME (Targeting Aging with Metformin) ma być największym na świecie badaniem leku na starzenie się. Jest on jednak od wielu lat odkładany, gdyż dotychczas nie znalazł się nikt chętny, by go sfinansować.
Nir Barzilai, pomysłodawca TAME i badacz w Albert Einstein School of Medicine w Nowym Jorku powiedział, że saudyjska fundacja zgodziła się na pokrycie 1/3 kosztów projektu. W jego ramach kilkanaście tysięcy starszych osób przyjmowałoby metforminę. Badacze chcą przetestować hipotezę mówiącą, że niektóre leki, zmieniając procesy komórkowe związane ze starzeniem się, mogą opóźnić pojawianie się różnych chorób, w tym nowotworów czy choroby Alzheimera.
Powołanie fundacji jest najprawdopodobniej związane z obawami władz Arabii Saudyjskiej o przyszłość. Co prawda kraj ma dość młodą populację, której mediana wieku wynosi około 31 lat (w Polsce jest to ok. 10 lat więcej), jednak saudyjskie społeczeństwo – jak stwierdzają przedstawiciele Hevolution Foundation – starzeje się szybciej biologicznie niż chronologicznie. Szybko bogacące się społeczeństwo zmniejszyło aktywność fizyczną, zaczęło źle się odżywiać, czego skutkiem jest eksplozja otyłości i cukrzycy.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Starzenie się to złożony, wieloetapowy proces, który jest trudno opisać biorąc po uwagę jedną tylko zmienną, jak np. wiek. Międzynarodowy zespół naukowdy informuje na łamach Nature Communications o utworzeniu zmiennej o nazwie wskaźnik dynamicznego stanu organizmu (DOSI – dynamic organismal state indicator). To wskaźnik obliczeniowy, który ma ułatwiać systematyczne badanie procesu starzenia oraz pomóc w opracowaniu biomarkerów starzenia się.
DOSI bierze pod uwagę m.in. dynamikę procesów biologicznych, tempo rekonwalescencji po chorobach czy urazach, rosnącą z wiekiem podatność na choroby i zwiększające się ryzyko zgonu. Twórcy wskaźnika – naukowcy z singapurskiej firmy biotechnologicznej Gero, z Roswell Park Comprehensive Cancer Center w USA oraz z trzech rosyjskich instytucji badawczych – wykorzystali następnie dane z wielkiej bazy CBC tworzonej przez amerykańskie CDC w ramach programu National Health And Nutritional Examination Surveys oraz dane z UK Biobank.
Wcześniejsze badania wielokrotnie wykazywały, że zdrowy tryb życia, porzucenie niezdrowych zwyczajów, wydłuża ludzkie życie. Dotychczas trudno było jednak ocenić wpływ w czasie poszczególnych działań tego typu.
Teraz dzięki wykorzystaniu DOSI badacze stwierdzili, że – jak się można było spodziewać – z wiekiem spada zdolność organizmu do regeneracji. O ile u zdrowego 40-latka całkowita regeneracja po chorobie czy urazie trwa około 2 tygodni, to u 80-latka okres ten wydłuża się do 6 tygodni. Spostrzeżenia te potwierdzono za pomocą różnych badań krwi oraz pomiarów aktywności fizycznej.
Uczeni ekstrapolowali te wyniki w czasie i wykazali, że przeciętny człowiek, który nie cierpi na choroby przewlekłe, całkowicie utraci zdolność regeneracji organizmu w wieku 120–150 lat. To jest zatem maksymalna granica długości ludzkiego życia.
To właśnie ta utrata zdolności do regeneracji może wyjaśniać, dlaczego nie obserwujemy, by ciągle były bite kolejne rekordy długości życia, mimo że rośnie średnia długość życia całych społeczeństw. Utrata możliwości regeneracji dotyczy bowiem nawet najzdrowszych i najlepiej starzejących się osób.
Badania wykazały, że nie jest możliwe zwiększenie maksymalnej długości życia poprzez zapobieganie czy leczenie chorób. Aby tego dokonać, musielibyśmy umieć manipulować procesem starzenia się, który prowadzi do utraty zdolności do regeneracji.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Materiały plastikowe znajdują się w użyciu już od kilku dziesięcioleci. Poszukując nowych rozwiązań, producenci napotykają jednak na poważne ograniczenie: niemożność bezpośredniego obserwowania wpływu mikroskopowej budowy materiału na właściwości mechaniczne. Cząsteczki syntetycznych polimerów są zwyczajnie zbyt małe, czego nie można już powiedzieć o biopolimerach, np. włóknach mięśniowych. To właśnie zainspirowało specjalistów z zespołu profesora Andreasa Bauscha z Technische Universität München (TUM).
Gdy film polietylenowy jest silnie rozciągany, staje się w wyniku reorganizacji łańcuchów polimerowych bardziej odporny na rozrywanie, a to ważna cecha w przypadku plastikowych toreb na zakupy. Pod wpływem częstych naprężeń niektóre elastyczne polimery - gumy napełnione - stają się natomiast bardziej miękkie. Zjawisko to zostało nazwane efektem Mullinsa (od nazwiska swojego odkrywcy Leonarda Mullinsa). Dotąd nie było jednak wiadomo, co dokładnie dzieje się z łańcuchami polimerowymi poddanymi działaniu naprężeń, a przecież zrozumienie procesów z poziomu molekularnego pozwoliłoby wynalazcom nowych plastików oszczędzić dużo czasu i pieniędzy.
Ekipa Bauscha wykorzystała białko kurczliwe mięśni, a mianowicie aktynę w formie włókienkowej (aktynę F). Utworzono nową sieć polimerową. Co ważne, filamenty aktynowe są widoczne pod konfokalnym mikroskopem fluorescencyjnym, dzięki czemu po przyłożeniu do materiału naprężeń można było obserwować ruchy pojedynczych włókien. Korzystając z reometru, który pozwala określić właściwości mechaniczne materiału, a także ze wspomnianego mikroskopu, Niemcy widzieli zachowanie sieci filamentów aktynowych podczas mechanicznej deformacji i mogli je sfilmować w trójwymiarze.
W ten sposób naukowcy uzyskali modelowy system, który rzucił nieco światła na procesy molekularne leżące u podstaw efektu Mullinsa, a także zjawiska odwrotnego, czyli twardnienia materiały pod wpływem powtarzających się naprężeń. Powodem zmiany właściwości mechanicznych była, jak można się domyślić, rozległa reorganizacja sieci.
-
przez KopalniaWiedzy.pl
Wg brytyjskich naukowców, liczne pieprzyki oznaczają młodszą skórę i większą gęstość kości. Komórki osób, które mają ich dużo, mają pewne właściwości związane z częstszą samoodnową. Niestety, kosztem wydaje się wyższy wskaźnik nowotworów – zarówno skóry, jak i innych rejonów organizmu, np. piersi.
Większość ludzi ma od 30 do 40 pieprzyków, ale u niektórych można się doliczyć nawet 600. Specjaliści z Królewskiego College'u Londyńskiego oraz dr Veronique Bataille, dermatolog z Hemel Hempstead General Hospital, poszukiwali związków między liczbą pieprzyków a innymi cechami fizycznymi.
Na początku Bataille stwierdziła, że ludzie z wieloma pieprzykami wydają się mniej podatni na wystąpienie różnych oznak starzenia skóry, np. zmarszczek. Najnowsze studium z 1200 bliźniętami sugeruje, że u tych samych osób z wiekiem w mniejszym stopniu obniża się gęstość kości. Tym oto sposobem rzadziej przydarzają im się osteoporotyczne złamania. Badanie pokazało, że u jednostek z ponad 100 pieprzykami prawdopodobieństwo wystąpienia osteoporozy jest o połowę niższe niż u ochotników z 25 i mniej pieprzykami.
Na razie nie wiadomo, czemu się tak dzieje, ale akademicy zauważyli, że telomery osób z dużą liczbą pieprzyków są dłuższe. Twory te znajdują się na końcówkach chromosomów. Ulegają skróceniu przy każdym podziale komórkowym. Im dłuższy więc telomer, tym więcej podziałów może przejść komórka. Jak wiemy, wiąże się to jednak z pewnymi zagrożeniami.
Dr Bataille uważa, że pieprzyki stanowią widzialny produkt (uboczny) układu kontrolującego starzenie organizmu. Działa on na zasadzie targu między długowiecznością a ryzykiem wystąpienia nowotworów.
-
przez KopalniaWiedzy.pl
Ivana Božić, doktorantka z Uniwersytetu Harvarda, stworzyła model matematyczny, który pokazuje, że pojedyncza mutacja nie wystarczy, by sprowokować wzrost nowotworu. Średnio zwiększa ona tempo podziałów komórkowych o zaledwie 0,4%. Oznacza to, że [...] konieczna jest wolna, stała akumulacja wielu mutacji w jednej komórce na przestrzeni lat.
Szefowa studium, którego wyniki ukazały się w piśmie Proceedings of the National Academy of Sciences (PNAS), podkreśla, że skoro do zezłośliwienia zmiany potrzeba wielu zachodzących na przestrzeni dłuższego czasu mutacji, potwierdzają się obserwacje epidemiologów i klinicystów. Wg nich, w przypadku licznych nowotworów rzucają się bowiem w oczy heterogenność (niejednorodność) i losowość. Mimo że dane pochodzące z sekwencjonowania genomu nowotworów są pouczające, uzgodnienie ich z obserwacjami epidemiologicznymi i klinicznymi stanowi spore wyzwanie. Nasz nowy model matematyczny zaczyna łagodzić ten rozdźwięk.
Božić wpisuje się w popularny ostatnio nurt badań, których autorzy próbują różnicować dwa typy mutacji w guzach: kierownicze i tzw. pasażerskie (te pierwsze mają decydujący wpływ na proces nowotworzenia, a drugie jedynie się dokładają). Naukowcy odkryli, że w większości guzów litych w kodujących genach występuje od 40 do 100 mutacji, choć średnio tylko od 5 do 15 z nich ma rzeczywisty wpływ na wzrost nowotworu. Pozostałe wiążą się jakoś z mutacjami napędzającymi, ale nie przynoszą guzowi bezpośrednich korzyści.
Guzy zaczynają się rozwijać przy pierwszej mutacji dającej przewagę nad innymi komórkami, pozwalając im rosnąć nawet minimalnie tylko szybciej od sąsiadów. Gdy mutacje kierownicze powoli akumulują się w danej komórce, dochodzi do przyspieszenia procesu – coraz szybszy podział komórkowy skutkuje coraz szybszym pojawianiem się mutacji kierowniczych. Wszystko wskazuje na to, że czas upływający między mutacjami kierowniczymi w tworzącym się guzie jest kluczowy dla losów pacjenta. Ustaliliśmy np., że jednostka, u której przez 20 lat nie dochodzi do drugiej mutacji kierowniczej w tej samej komórce, może nigdy nie doświadczyć wzrostu guza do masy większej niż kilka tysięcznych grama. Jeśli jednak druga mutacja kierownicza nastąpi w ciągu 5 lat, w ciągu 25 lat może się rozwinąć guz ważący kilkaset gramów. Wyliczenia te pokrywają się z obserwacjami onkologów, że potrzeba ok. 30 lub więcej lat, by z początkowych komórek urósł nowotwór.
Zespół Božić przetestował trafność modelu na dwóch dobrze zbadanych nowotworach: glejaku wielopostaciowym i gruczolakoraku trzustki. Naukowcy zaprezentowali równanie, które pozwala opomiarować korzyści wynikające z każdej mutacji kierowniczej i ustalić, ile ich występuje w danym guzie.
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.