Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Japońscy naukowcy twierdzą, że mieszanina wody i gliny może zastąpić tworzywa sztuczne. Zespół Takuzo Aidy z Uniwersytetu Tokijskiego zmieszał kilka gramów gliny ze 100 gramami wody w obecności poliakrylatu sodu, działający jak "molekularny klej". Ten polimer spowodował, że glina przekształciła się w bardzo cienkie warstwy, co zwiększyło jej powierzchnię i pozwoliło na dobre przyleganie "kleju".

W efekcie uzyskano plastyczny przezroczysty żel, który w 98% składa się z wody. Żel jest na tyle mocny, że udało się z niego zbudować most o szerokości 3,5 centymetra.

Japończycy mówią, że wytrzymałość źelu zależy od sumy sił działających pomiędzy warstwami gliny a klejem, a więc od tzw. sił supramolekularnych.

Wytrzymałość wielu hydrożeli jest zależna od kowalencyjnych wiązań chemicznych, a nie od sił supramolekularnych. Wadą takiej właściwości jest fakt, że jeśli dojdzie do zerwania wiązań, cały materiał traci na wytrzymałości. W przypadku sił supramolekularnych nie ma takiego niebezpieczeństwa, gdyż jeśli nawet materiał zostanie osłabiony np. pod wpływem nacisku, to siły supramolekularne ponownie zaczną działać i materiał odzyska wytrzymałość.

Takuzo Aida podkreśla jeszcze jedną przydatną cechę nowego hydrożelu - jego formowanie trwa zaledwie 3 minuty, a do otrzymania substancji nie jest konieczne rozumienie procesu jej tworzenia się.

Craig Hawker z Uniwersytetu Kalifornijskiego z Santa Barbara jest pod wrażeniem osiągnięć Japończyków. Największym przełomem jest łatwość produkcji oraz wyjątkowe właściwości uzyskanego materiału - stwierdził. Jego zdaniem największe zalety nowego hydrożelu to wytrzymałość i zdolność do samonaprawy. W przyszłości mogą dzięki niemu powstać jeszcze doskonalsze materiały.

Share this post


Link to post
Share on other sites

Można by z tego wybudować drogi w jakiejś dżungli, gdzie wilgotność by kompensowała ewentualne ubytki wody w całym materiale :D Ciekawe jakie naprężenia ten materiał może wytrzymywać i do czego tak na prawdę można by go wykorzystać.

Share this post


Link to post
Share on other sites

tylko po co budować drogi w dżungli? zostawmy dżunglę samą sobie - i tak jest ich już mało - i znajdźmy sposób na jej ominięcie. co zostanie z dżungi, jeśli zaczną pojawiać się w niej superdrogi?

Share this post


Link to post
Share on other sites

Po to aby dało się tą dżunglę jakoś przejechać. Nie mówię tu wcale o autostradzie, ale o lokalnych drogach, które i tak są wykorzystywane przez lokalnych mieszkańców. Lepsza droga nie powinna zwiększyć liczby samochodów w okolicy, a zwiększy prędkość przejazdu - dzięki czemu mniej spalin w lesie zostanie. Sama nawierzchnia byłaby ekologiczna, więc czego chcieć więcej ?

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Przechłodzona woda to tak naprawdę dwie ciecze w jednej – wykazali naukowcy z Pacific Northwest National Laboratory (PNNL). Wykonali oni szczegółowe badania wody, która zachowuje stan ciekły znacznie poniżej temperatury zamarzania. Okazało się, że w wodzie takiej istnieją dwie różne struktury.
      Odkrycie pozwala wyjaśnić niektóre dziwne właściwości, jakie wykazuje woda w niezwykle niskich temperaturach, jakie panują w przestrzeni kosmicznej czy na krawędziach atmosfery. Dotychczas istniały różne teorie na ten temat, a naukowcy spierali się co do niezwykłych właściwości przechłodzonej wody. Teraz otrzymali pierwsze eksperymentalnie potwierdzone dane odnośnie jej struktury. Nie są to spory czysto akademickie, gdyż zrozumienie wody, która pokrywa 71% powierzchni Ziemi, jest kluczowe dla zrozumienia, w jaki sposób reguluje ono środowisko naturalne, nasze organizmy i jak wpływa na samo życie.
      Wykazaliśmy, że ciekła woda w ekstremalnie niskich temperaturach jest nie tylko dość stabilna, ale istnie też w dwóch stanach strukturalnych. Odkrycie to pozwala na rozstrzygnięcie sporu dotyczącego tego, czy mocno przechłodzona woda zawsze krystalizuje przed osiągnięciem stanu równowagi. Odpowiedź brzmi: nie, mówi Greg Kimmel z PNNL. Dotychczas naukowcy sprzeczali się np. o to, czy woda schłodzona do temperatury -83 stopni Celsjusza rzeczywiście może istnieć w stanie ciekłym i czy jej dziwne właściwości nie wynikają ze zmian zachodzących przed krzepnięciem.
      Woda, pomimo swojej prostej budowy, jest bardzo skomplikowaną cieczą. Na przykład bardzo trudno jest zamrozić wodę w temperaturze nieco poniżej temperatury topnienia. Woda opiera się zamarznięciu. Potrzebuje ośrodka, wokół którego zamarznie, jak np. fragment ciała stałego. Woda rozszerza się podczas zamarzania, co jest zadziwiającym zachowaniem w porównaniu z innymi cieczami. Jenak to dzięki temu na Ziemi może istnieć życie w znanej nam postaci. Gdyby woda kurczyła się zamarzając i opadała na dno lub gdyby para wodna w atmosferze nie zatrzymywała ciepła, powstanie takiego życia jak obecnie byłoby niemożliwe.
      Bruce Kay i Greg Kimmel z PNNL od 25 lat badają niezwykłe właściwości wody. Teraz, przy pomocy Loni Kringle i Wyatta Thornleya dokonali przełomowych badań, które lepiej pozwalają zrozumieć zachowanie molekuł wody.
      Wykazały one, że w mocno przechłodzonej wodzie dochodzi do kondensacji w gęstą podobną do płynu strukturę. Istnieje ona równocześnie z mniej gęstą strukturą, w której wiązania bardziej przypominają te spotykane w wodzie. Proporcja gęstej struktury gwałtownie obniża się wraz ze spadkiem temperatury z -28 do -83 stopni Celsjusza. Naukowcy wykorzystali spektroskopię w podczerwieni do obserwowania molekuł wody i wykonania obrazowania na różnych etapach badań. Kluczowy jest fakt, że wszystkie te zmiany strukturalne były odwracalne i powtarzalne, mówi Kringle.
      Badania pozwalają lepiej zrozumieć zjawisko krupy śnieżnej, która czasem opada na ziemię. Tworzy się ona gdy płatki śniegu stykają się w górnych partiach atmosfery z przechłodzoną wodą. Ciekła woda a górnych partiach atmosfery jest silnie przechłodzona. Gdy dochodzi do jej kontaktu z płatkiem śniegu, gwałtownie zamarza i w odpowiednich warunkach opada na ziemię. To jedyny raz, gdy większość ludzi ma do czynienia z przechłodzoną wodą, mówi Bruce Kay.
      Dzięki pracy amerykańskich uczonych można będzie lepiej zrozumieć, jak ciekła woda może istnieć na bardzo zimnych planetach. Pomoże też w badaniu warkoczy komet, w które w znacznej mierze składają się z przechłodzonej wody.
      Praca Kaya i Kimmela znajdzie też praktyczne zastosowanie. Pomaga ona bowiem lepiej zrozumieć np. zachowanie molekuł wody otaczających proteiny, co pomoże w pracach nad nowymi lekami. Woda otaczająca indywidualne proteiny nie ma zbyt dużo miejsca. Nasze badania mogą pomóc w zrozumieniu, jak woda zachowuje się w tak ciasnych środowiskach, mówi Kringle. Thornley dodaje zaś, że podczas przyszłych badań możemy wykorzystać opracowaną przez nas technikę do śledzenia zmian zachodzących podczas różnych reakcji chemicznych.
      Więcej o badaniach można przeczytać w artykule Reversible structural transformations in supercooled liquid water from 135 to 245 K.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Posługując się polem magnetycznym i hydrożelem, naukowcy ze Szkoły Medycyny Uniwersytetu Pensylwanii zademonstrowali potencjalną metodę odtwarzania złożonych tkanek. Za jej pomocą można by sobie radzić np. z degeneracją tkanki chrzęstnej. Wyniki badań zespołu opublikowano w piśmie Advanced Materials.
      Odkryliśmy, że jesteśmy w stanie organizować obiekty, takie jak komórki, w taki sposób, by utworzyć [...] złożone tkanki, nie zmieniając samych komórek. By uzyskać reakcję na pole magnetyczne, inni musieli dodawać do komórek cząstki magnetyczne. Zabieg ten może jednak wywierać niepożądany długofalowy wpływ na zdrowie komórki. Zamiast tego manipulowaliśmy więc magnetycznym charakterem otoczenia komórki; dzięki temu mogliśmy organizować obiekty za pomocą magnesów - opowiada Hannah Zlotnick.
      U ludzi ubytki w chrząstce naprawia się za pomocą różnych sztucznych i biologicznych materiałów. Ich właściwości odbiegają jednak od oryginału, dlatego należy się liczyć z ograniczeniami takiego rozwiązania. Zlotnik wskazuje też na naturalny gradient chrząstki (powierzchniowo występuje większa liczba komórek).
      Mając to wszystko na uwadze, Amerykanie postanowili poszukać innego rozwiązania. Podczas eksperymentów odkryli, że gdy do hydrożelu mającego formę ciekłą doda się ciecz magnetyczną, można porządkować komórki i inne obiekty, w tym mikrokapsułki do dostarczania leków, według specyficznego wzorca, który przypomina naturalną tkankę. Wystarczy przyłożyć zewnętrzne pole magnetyczne.
      Po działaniu pola magnetycznego całość wystawiano na oddziaływanie ultrafioletu (naukowcy prowadzili fotosieciowanie, utrwalając rozmieszczenie obiektów).
      W porównaniu do standardowych jednolitych materiałów syntetycznych [...], takie "odwzorowane magnetycznie" tkanki lepiej przypominają oryginał pod względem rozmieszczenia komórek i właściwości mechanicznych [uczeni odtworzyli chrząstkę stawową] - podkreśla dr Robert Mauck.
      Technikę badano na razie wyłącznie in vitro.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Międzynarodowy zespół naukowców zaprojektował hydrożel, który pozwala hodować wykorzystywane w immunoterapii nowotworów limfocyty T. Hydrożele te imitują węzły chłonne, gdzie limfocyty T się namnażają. Zespół ma nadzieję, że technologia szybko znajdzie zastosowanie w klinikach.
      Uczeni, których artykuł ukazał się w piśmie Biomaterials, rozpoczęli projekt, którego celem jest drukowanie nowego hydrożelu w 3D. Ma to przyspieszyć transfer technologii na rynek.
      Hydrożele 3D są wykonywane z 1) poli(tlenku etylenu), biokompatybilnego polimeru szeroko wykorzystywanego w biomedycynie, oraz 2) drobnocząsteczkowej heparyny. Polimer zapewnia właściwości strukturalne i mechaniczne konieczne do wzrostu limfocytów T, a heparyna "kotwiczy" różne biocząsteczki, np. cytokinę CCL21; CCL21 występuje w węzłach chłonnych i odgrywa ważną rolę w migracji i proliferacji komórek.
      Naukowcy wyjaśniają, że w leczeniu nowotworów można stosować adoptywną terapię komórkową (ang. adoptive cell therapy). Polega ona na wykorzystaniu zmodyfikowanych in vitro własnych komórek odpornościowych pacjenta i zwrotnym ich podaniu do krwiobiegu.
      Jej zastosowanie jest ograniczane przez obecne podłoża hodowlane, ponieważ nie są one na tyle skuteczne, by umożliwić namnażanie i wzrost odpowiedniej liczby terapeutycznych limfocytów T w krótkim czasie i w opłacalny ekonomicznie sposób - podkreśla Judith Guasch z Institut de Ciència de Materials de Barcelona (ICMAB-CSIC).
      Zespół będzie próbował drukować kompatybilne z bioreaktorami duże hydrożele 3D. Celem ma być namnażanie limfocytów T w bardziej wydajny sposób. Obecnie trwa poszukiwanie partnerów przemysłowych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu Hokkaido opisali hydrożel, który naśladuje zdolność ludzkiego mózgu do zapamiętywania i zapominania. Wyniki ich badań ukazały się w piśmie Proceedings of the National Academy of Sciences (PNAS).
      Ludzki mózg uczy się różnych rzeczy i zapomina informacje, gdy nie są już istotne. Odtworzenie dynamicznego procesu pamięciowego w materiałach wyprodukowanych przez człowieka stanowi wyzwanie. Ostatnio japońscy naukowcy uzyskali hydrożel, który naśladuje dynamiczną funkcję pamięciową naszego mózgu.
      Hydrożele są doskonałymi kandydatami do odtwarzania funkcji biologicznych, ponieważ są miękkie i wilgotne jak ludzkie tkanki. Jesteśmy podekscytowani, mogąc zademonstrować, jak hydrożel naśladuje pewne funkcje pamięciowe tkanki mózgowej - cieszy się prof.  Jian Ping Gong.
      Podczas testów akademicy umieszczali cienką warstwę hydrożelu (o ok. 45% zawartości wody) między płytkami. W górnej wycięty był kształt, np. samolot, albo wyraz, np. "GEL". Na początku żel umieszczano w zimnej wodzie, a potem przenoszono go do gorącej kąpieli. Żel wchłaniał wodę w odsłoniętej części. W ten sposób wzorzec był nanoszony na materiał jak informacja.
      Kiedy zawierający poliamfolity żel przenoszono z powrotem do zimnej wody, odsłonięty obszar stawał się ciemniejszy, przez co przechowywana informacja była wyraźnie widoczna. W niższej temperaturze hydrożel stopniowo się kurczył, uwalniając wchłoniętą wodę. Wzór coraz bardziej bladł.
      Japończycy zauważyli, że im dłużej żel pozostawał w gorącej kąpieli, tym ciemniejszy (bardziej intensywny) był wzór i tym więcej czasu zajmowało blaknięcie czy, inaczej mówiąc, zapominanie informacji. Zespół wykazał także, że wyższe temperatury intensyfikowały "wspomnienia".
      Wygląda to podobnie jak u ludzi. Im więcej czasu spędzasz na uczeniu się czegoś lub im silniejszy jest bodziec emocjonalny, tym dłużej się zapomina - wyjaśnia prof. Kunpeng Cui.
      Uczeni zademonstrowali, że pamięć hydrożelowa jest stabilna przy wahaniach temperatury i dużym rozciąganiu. Co ciekawe, można zaprogramować proces zapominania, dostrajając czas uczenia termicznego lub temperaturę. Gdy do poszczególnych liter wyrazu GEL zastosowano, na przykład, różne czasy uczenia, litery zanikały sekwencyjnie.
      Przypominający działanie mózgu hydrożelowy system pamięciowy można eksplorować pod kątem pewnych zastosowań, np. w wiadomościach, które znikają ze względów bezpieczeństwa - podsumowuje Cui.
       

       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zmiany klimatyczne mogą w wielu miejscach na świecie zmniejszyć zdolność gleby do absorbowania wody, twierdzą naukowcy z Rutgers University. To zaś będzie miało negatywny wpływ na zasoby wód gruntowych, produkcję i bezpieczeństwo żywności, odpływ wód po opadach, bioróżnorodność i ekosystemy.
      Wskutek zmian klimatu na całym świecie zmieniają się wzorce opadów i inne czynniki środowiskowe, uzyskane przez nas wyniki sugerują, że w wielu miejscach na świecie może dość szybko dojść do znacznej zmiany sposobu interakcji wody z glebą, mówi współautor badań Daniel Giménez. Sądzimy, że należy badać kierunek, wielkość i tempo tych zmian i włączyć je w modele klimatyczne. Uczony dodaje, że obecność wody w glebie jest niezbędna, by ta mogła przechowywać węgiel, jej brak powoduje uwalnianie węgla do atmosfery.
      W ubiegłym roku w Nature ukazał się artykuł autorstwa Giméneza, w którym naukowiec wykazał, że regionalne wzrosty opadów mogą prowadzić do mniejszego przesądzania wody, większego jej spływu po powierzchni, erozji oraz większego ryzyka powodzi. Badania wykazały, że przenikanie wody do gleby może zmienić się już w ciągu 1-2 dekad zwiększonych opadów. Jeśli zaś mniej wody będzie wsiąkało w glebę, mniej będzie dostępne dla roślin i zmniejszy się parowanie.
      Naukowcy z Rutgers University od 25 lat prowadzą badania w Kansas, w ramach których zraszają glebę na prerii. W tym czasie odkryli, że zwiększenie opadów o 35% prowadzi do zmniejszenia tempa wsiąkania wody w glebę o 21–35 procent i jedynie do niewielkiego zwiększenia retencji wody.
      Największe zmiany zostały przez naukowców powiązane ze zmianami w porach w glebie. Duże pory przechwytują wodę, z której korzystają rośliny i mikroorganizmy, co prowadzi do zwiększonej aktywności biologicznej, poprawia obieg składników odżywczych w glebie i zmniejsza erozję.
      Gdy jednak dochodzi do zwiększenia opadów, rośliny mają grubsze korzenie, które mogą zatykać pory, a to z kolei powoduje, że gleba słabiej się poszerza i kurczy gdy wody jest więcej lub mniej.
      W kolejnym etapie badań naukowcy chcą dokładnie opisać mechanizm zaobserwowanych zmian, by móc ekstrapolować wyniki badań z Kansas na inne regiony świata i określić, w jaki sposób zmiany opadów wpłyną na gleby i ekosystemy.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...