Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Jedna ciężka choroba zmniejsza ryzyko drugiej?

Recommended Posts

Osoby cierpiące na chorobę Alzheimera rzadziej chorują na nowotwory - wykazali naukowcy z University of Washington School of Medicine. Co ciekawe, u osób z nowotworami zaobserwowano z kolei niższą zapadalność na alzheimeryzm.

Autorami odkrycia, o którym poinformowało czasopismo Neurology, są badacze kierowani przez dr Catherine M. Roe. Do udziału w studium naukowcy zaprosili 3020 osób uczestniczących w długofalowym programie oceny ryzyka chorób układu krążenia. W momencie rozpoczęcia badania 164 pacjentów (5,4% badanej populacji) cierpiało na chorobę Alzheimera, zaś 522 (17,3%) żyło ze zdiagnozowanym nowotworem.

Zespół dr Roe nadzorował stan zdrowia uczestników średnio przez 5 lat w celu stwierdzenia demencji oraz 8 lat w oczekiwaniu na pojawienie się nowych przypadków nowotworów. Ostatecznie zdiagnozowano 478 nowych przypadków demencji, zaś u 376 osób zdiagnozowano inwazyjne formy nowotworów.

Podczas analizy zebranych informacji okazało się, że dla osób cierpiących na alzheimeryzm ryzyko hospitalizacji z powodu nowotworu spadło aż o 69% w porównaniu do osób wolnych od choroby Alzheimera.

Zaobserwowano także odwrotną zależność: dla pacjentów, którzy w momencie rozpoczęcia studium cierpieli na nowotwory, ryzyko stwierdzenia choroby Alzheimera było aż o 43% niższe, niż wśród osób, u których nowotworu nie wykryto. Należy jednak zaznaczyć, że zjawisko to zaobserwowano wyłącznie u osób rasy kaukaskiej; uczestnicy należący do innych grup etnicznych nie byli chronieni przed jedną z tych chorób dzięki zapadnięciu na drugą.

Badacze z Waszyngtonu przyznają, że nie potrafią wyjaśnić przyczyn zaobserwowanego efektu. Zapowiadają jednak, że będą prowadzili badania, których celem będzie zidentyfikowanie mechanizmów odpowiedzialnych za to zjawisko, ponieważ wiele wskazuje na to, że badane przez nich choroby są ze sobą powiązane.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Choroba Alzheimera i towarzyszący jej rozpad osobowości przerażają wielu, a dostępne leki, delikatnie mówiąc, nie grzeszą skutecznością. Dzięki pracy zespołu dr. Piotra Pięty z IChF PAN mogą powstać nowe, efektywniejsze farmaceutyki. Naukowcy pokazali, w jaki sposób wielkość cząsteczek złożonych z beta-amyloidu wpływa na sposób ich oddziaływania z błonami komórkowymi, a co za tym idzie, jak modyfikuje przebieg choroby. Kolejnym krokiem ma być testowanie w tym modelu potencjalnych leków.
      Naukowcy są m.in. po to, żeby wyjaśniać, jak funkcjonuje świat. Ich badania często wydają się abstrakcyjne, ale jak się okazuje mogą całkiem realnie pomóc wielu z nas. Tak jest z pracą zespołu dr. Piotra Pięty z IChF PAN. Wykazał on, w jaki sposób wielkość cząsteczek złożonych z beta-amyloidu – substancji uznawanej za "winowajcę" w chorobie Alzheimera – wpływa na sposób oddziaływania tych cząstek z błonami komórkowymi, a co za tym idzie, jak modyfikuje przebieg choroby.
      Naukowcy z IChF pracują na syntetycznych, modelowych błonach komórkowych, zbudowanych najprościej jak można sobie wyobrazić, ale jednocześnie podobnych do tych, jakie można znaleźć w ludzkim mózgu. Błony te składają się tylko z mieszaniny fosfolipidów (bez receptorów i innych białek błonowych) i dzięki temu umożliwiają badaczom skupienie się wyłącznie na tym, jak rozmaite cząsteczki wpływają na barierę zapewniającą trwałość komórek. Chcieliśmy się dowiedzieć, co cząsteczki beta-amyloidu tak naprawdę robią z tymi błonami, wyjaśnia dr Pięta, czy one się osadzają na ich powierzchni, czy je niszczą, czy rozpuszczają, a jeśli rozpuszczają, to dlaczego […].
      Pytań jest wiele, odpowiedzi dopiero się pojawiają. Nam w naszych badaniach udało się kontrolować wielkość oligomerów, czyli niedużych cząsteczek złożonych z kilku amyloidów, i dzięki temu mogliśmy sprawdzić, w jaki sposób ta wielkość wpływa na mechanizm ich oddziaływania z modelową błoną - mówi dr Pięta. W początkowych badaniach nad alzheimerem badano mózgi osób chorych, a w zasadzie już zmarłych na tę chorobę. W mózgach znajdowano złogi zbudowane z długich nici – fibryli - i przez wiele, wiele lat uważano, że to te fibryle są głównym czynnikiem patogennym.
      Ostatnie badania, w tym te prowadzone przez dr. Piętę, pokazują jednak coś innego. To nie długie fibryle są winowajcą, lecz raczej ich prekursory, oligomery beta-amyloidu. Amyloidy są produkowane w sposób ciągły u każdego z nas z białek błonowych; są odcinane enzymatycznie. Problem się pojawia, gdy przestają działać mechanizmy regulujące ich ilość i "wygląd". Nietoksyczne amyloidy zawierają 39-43 aminokwasy, a ich drugorzędowa struktura to alfa-helisa (kształt nieco przypominający łańcuch DNA). Te "niedobre", zmienione, przypominają raczej harmonijki. Najgorsze są takie, które mają 42 aminokwasy. Za pomocą mikroskopii sił atomowych przeprowadziliśmy dwa typy pomiarów, jeden dla cząsteczek małych, o średnicy ok. 2 nm, a drugi dla nieco większych – o średnicy ok. 5 nm - wyjaśnia naukowiec. Okazało się, że małe oligomery działają zupełnie inaczej niż duże. Duże po osadzeniu na błonie agregują, tworząc długie fibryle. Wszystkie zjawiska, które przebiegają z ich udziałem, zachodzą na powierzchni modelowej błony komórkowej i nie prowadzą do jej zniszczenia. Małe oligomery to zupełnie inna historia. One błonę niszczą. Na początku tworzą w niej różnych rozmiarów i kształtów dziury - wyjaśnia dr Pięta. Po utworzeniu dziury małe oligomery wnikają do wnętrza błony i wraz z cząsteczkami fosfolipidów błonowych tworzą globularne micele. Te micelarne kompleksy dyfundują na zewnątrz i w ten sposób usuwają fosfolipidy z błony, prowadząc do jej rozpuszczania. Mechanizm oddziaływania z błoną zmienia się wraz ze zmianą wielkości oligomeru, lecz w przypadku obu badanych przez nas amyloidów wywołuje spadek trwałości mechanicznej błony o ⁓50%. Innymi słowy, zarówno małe, jak i duże oligomery są toksyczne, choć mechanizm ich działania jest inny. Nasze badania wyjaśniają te mechanizmy i godzą sprzeczne raporty publikowane w literaturze - precyzuje badacz.
      Na razie wyjaśniamy tylko podstawowe mechanizmy - mówi dr Pięta, ale w kolejnym etapie naszych badań dołożymy do tego układu cząsteczki leków i sprawdzimy, które z nich potrafią modyfikować oddziaływanie amyloidu z błoną, a zatem, być może, i przebieg choroby. Podejmiemy badania cząsteczek, które np. mogłyby zdezaktywować beta-amyloid, przyczepiając się do niego, zanim zniszczy błonę. Rozpoczęliśmy współpracę z farmaceutami i biochemikami. Możemy im zasugerować, czy ich leki oddziałują z amyloidami, a jeżeli tak, to na jakim poziomie i jak powinny się zachowywać, żeby np. podwyższać trwałość błony komórkowej - podsumowuje naukowiec.
      Badania prowadzone w IChF PAN z pewnością przyczyniają się do lepszego zrozumienia mechanizmów prowadzących do choroby Alzheimera, a tym samym mają szansę zrewolucjonizować sposób jej leczenia.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Codzienne wstrzykiwanie przez 5 tygodni myszom z chorobą Alzheimera (ChA) 2 krótkich peptydów znacząco poprawia pamięć zwierząt. Terapia ogranicza także zmiany typowe dla ChA: stan zapalny mózgu oraz akumulację beta-amyloidu.
      U myszy, które przechodziły terapię, zaobserwowaliśmy słabsze nagromadzenie blaszek beta-amyloidu oraz zmniejszenie zapalenia mózgu - podkreśla prof. Jack Jhamandas z Uniwersytetu Alberty.
      Odkrycie bazuje na wcześniejszych ustaleniach odnośnie do związku AC253, który może blokować toksyczne oddziaływania beta-amyloidu. Podczas badań ustalono, że AC253 blokuje przyłączanie beta-amyloidu do pewnych receptorów komórek mózgu.
      Okazało się jednak, że choć AC253 zapobiega akumulacji beta-amyloidu, przez szybki metabolizm w krwiobiegu jest problem z jego docieraniem do mózgu. Wskutek tego, by terapia AC253 była skuteczna, potrzeba dużych ilości tego związku, co jest niepraktyczne i może zwiększyć ryzyko rozwoju odpowiedzi immunologicznej na leczenie. Teoretycznie mogłoby pomóc przekształcenie AC253 z formy wstrzykiwalnej w doustną tabletkę, ale AC253 jest zbyt złożony, by problem dało się rozwiązać w ten sposób.
      Jhamandas wpadł więc na pomysł, by "przeciąć" AC253 na dwa fragmenty i sprawdzić, czy można stworzyć dwie mniejsze nici peptydowe, które blokowałyby beta-amyloid w podobny sposób jak AC253. Podczas serii testów na genetycznie zmodyfikowanych myszach Kanadyjczycy odkryli dwa krótsze fragmenty AC253, które replikowały prewencyjne i regeneracyjne właściwości większego peptydu.
      Następnie naukowcy wykorzystali modelowanie komputerowe i sztuczną inteligencję do prac nad drobnocząsteczkowym lekiem. Zespół koncentruje się na wytworzeniu zoptymalizowanej doustnej wersji, tak by mogły się zacząć testy kliniczne na ludziach. Jhamandas podkreśla, że leki drobnocząsteczkowe są preferowane, bo taniej je wyprodukować, a poza tym mogą one być zażywane doustnie i łatwiej dostają się do mózgu z krwią.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Po raz pierwszy w Polsce wkrótce zostanie zastosowana nowa przełomowa metoda przeciwnowotworowa o nazwie CAR-T, ma ona pomóc w leczeniu jednej z odmian opornych na terapię chłoniaków – poinformowała PAP prof. Lidia Gil z Uniwersytetu Medycznego w Poznaniu.
      Uzyskaliśmy już trudną do spełnienia akredytację, mamy również zapewnione finansowanie jej użycia, czynimy zatem ostatnie przygotowania do wprowadzenia tej przełomowej metody przeciwnowotworowej – powiedziała specjalistka. Wyjaśniła, że chodzi o immunoterapię CAR-T stosowaną w leczeniu tzw. chłoniaków rozlanych z dużych komórek B. Dla niektórych chorych jest to terapia ostatniej szansy, gdy po zastosowania różnych metod leczenia doszło u nich do nawrotu choroby.
      Nowa immunoterapia u pierwszych dwóch pacjentów z tego rodzaju chłoniakiem ma być zastosowana w najbliższych tygodniach w Klinice Hematologii i Transplantologii Szpiku Uniwersytetu Medycznego w Łodzi, którym kieruje prof. Lidia Gil. Specjalistka podkreśla, że jest to najbardziej zaawansowana i spersonalizowana technologia jaką stosuje się w leczeniu chorób hematoonkologicznych. Przygotowywana jest indywidualnie dla każdego pacjenta i ma ponownie zaaktywizować jego układ immunologiczny do walki z komórkami nowotworowymi.
      Od chorego - tłumaczy ekspertka - najpierw pobierane są limfocyty T, komórki odpornościowe wytwarzane w szpiku kostnym i dojrzewające w grasicy. Limfocyty te u chorych na nowotwory przestają odróżniać komórki zmutowane i nie atakują ich, co umożliwia rozwój choroby nowotworowej. Terapia CAR-T ma przywrócić im tę umiejętność. W tym celu po pobraniu są one zamrażane i przekazywane do laboratorium, gdzie poddawane są modyfikacji genetycznej.
      Polega ona na tym, że do DNA limfocytu T przy użyciu wirusa wszczepia się gen kodujący receptor, rozpoznający antygen specyficzny dla nowotworu, z którym ta komórka ma walczyć - wyjaśnia prof. Gil. Jest to receptor CAR, stąd nazwa terapii – CAR-T (literka T dotyczy limfocytu T).
      Modyfikacja limfocytu T zostanie przeprowadzona w jednym z laboratoriów Uniwersytetu Stanforda. W Europie nie ma jeszcze takiego ośrodka, na razie przygotowuje się do tego jedno z laboratoriów w Amsterdamie (zacznie działać prawdopodobnie w 2020 r.). Przeprogramowane limfocyty są podawane pacjentowi w jednorazowym wlewie dożylnym, trwającym około 30 minut. To drugi, najtrudniejszy etap tej terapii, dlatego do jej zastosowania wybierane są wyselekcjonowane ośrodki, które mają duże doświadczenia w przeszczepach komórek szpiku kostnego, bo sposób postępowania w obu przypadkach jest podobny.
      Chodzi o działania niepożądane, które najczęściej pojawiają się w ciągu pierwszych 10 dni, pacjent przebywa wtedy w szpitalu i jest pod ścisłą kontrolą – wyjaśnia prof. Gil. Najgroźniejsze z nich to wywołany rozpadem komórek nowotworowych tzw. wyrzut cytokin, który może doprowadzić do niewydolności narządów, oraz zaburzenia neurologiczne, w tym głównie encefalopatia (uszkodzenie mózgu).
      Potrafimy jednak sobie z tym radzić, ponieważ sytuacja ta jest podobna jak po przeszczepach szpiku – zapewnia. Po tym najtrudniejszym zwykle okresie wystarczająca jest obserwacje ambulatoryjna pacjenta przez około półtora miesiąca. Jeśli wszystko jest w porządku – nie wymaga on innego leczenia, może być potrzebna jedynie terapia wspomagająca.
      Prof. Iwona Hus z Kliniki Hematologii Instytutu Hematologii i Transfuzjologii w Warszawie zwraca uwagę, że terapia CAR-T w przeciwieństwie np. do chemioterapii czy innych terapii, polegających na podawaniu leków przeciwnowotworowych, jest jednorazowa. Przyznaje, że jest to kosztowne leczenie. Jedynie za modyfikację limfocytów T ośrodki w Europie Zachodniej płacą od 300 do 350 tys. euro, a do tego dochodzą jeszcze koszty specjalistycznej opieki nad pacjentem. Jednak inne nowoczesne terapie wymagają stałego podawania leków nawet przez kilka lat, co w sumie czasami wychodzi drożej.
      Nie wiemy jeszcze, czy CAR-T zapewnia trwałe wyleczenie, bo jest jeszcze zbyt krótki okres obserwacji – podkreśla specjalistka. Metodę tę po raz pierwszy zastosowano w 2012 r. w Filadelfii w USA, w leczeniu opornej na terapie ostrej białaczki limfoblastycznej. Od tego czasu jest ona stosowana coraz częściej, choć wciąż jedynie u pojedynczych pacjentów. Z dotychczasowym badań wynika, że odpowiedź na leczenie uzyskuje się u zdecydowanej większości chorych.
      W Polsce są już pierwsi pacjenci leczeni terapią CAR-T, ale zastosowano ją za granicą. Są teraz starania, żeby była ona wykorzystywana również w naszym kraju, w kilku ośrodkach m.in. w Gdańsku i Wrocławiu. Prowadzone są w tej sprawie rozmowy z ministerstwem zdrowia - powiedziała prof. Gil. Dotyczą one dwóch zarejestrowanych w USA i Unii Europejskiej metod tej technologii. Jedna stosowana jest u dzieci i młodych dorosłych z ostrą białaczką limfoblastyczną, druga u dorosłych pacjentów z oporne na leczenie chłoniaki z dużych komórek B.
      CAR-T to z całą pewnością terapia przełomowa, daje szanse chorym, dla których wcześniej nie było żadnej skutecznej opcji leczenia – podkreśla prof. Hus.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Po raz pierwszy naukowcom udało się zidentyfikować bardzo wczesny etap toksycznego oddziaływania beta-amyloidu na neurony. Poznanie przyczyny dysfunkcji komórkowej może pomóc w opracowaniu skutecznych metod terapii choroby Alzheimera (ChA).
      W mózgach pacjentów z ChA, u których rozwinęły się już objawy kliniczne, występują blaszki beta-amyloidu. W ramach wielu podejść terapeutycznych próbuje się je usuwać, ale z umiarkowanymi jak dotąd sukcesami.
      Kluczowe jest, byśmy wykrywali i leczyli chorobę o wiele wcześniej. Z tego powodu skoncentrowaliśmy się na hiperaktywnych neuronach, które występują na bardzo wczesnym etapie [choroby] - na długo przed pojawieniem się demencji - wyjaśnia prof. Arthur Konnerth z Uniwersytetu Technicznego w Monachium.
      Wskutek nadmiernej aktywacji inne neurony z obwodu stale dostają fałszywe sygnały, co prowadzi do upośledzenia procesów przetwarzania.
      Konnerth, jego doktorant Benedikt Zott i inni członkowie zespołu zidentyfikowali wyzwalacz tego procesu. Wyniki ich badań ukazały się w piśmie Science.
      Niemcy tłumaczą, że neurony komunikują się za pośrednictwem neuroprzekaźników. Do najważniejszych neuroprzekaźników pobudzających należy kwas L-glutaminowy. Jest on uwalniany do szczeliny synaptycznej. Później, by umożliwić transmisję kolejnych sygnałów, transmiter jest usuwany dzięki wychwytowi zwrotnemu, rozkładowi przez enzymy czy dyfuzji.
      Naukowcy odkryli, że w szczelinie synaptycznej hiperaktywnych neuronów zbyt długo występowały wysokie stężenia kwasu L-glutaminowego. Było to skutkiem działania beta-amyloidu, który blokował transport (wychwyt) przekaźnika z przestrzeni synaptycznej. Ekipa przetestowała ten mechanizm, posługując się cząsteczkami beta-amyloidu pozyskanymi z próbek pobranych od pacjentów oraz różnymi modelami mysimi. Każdorazowo uzyskiwano podobne rezultaty.
      Akademicy zaobserwowali, że za blokadę nie odpowiadają blaszki, ale wczesna forma rozpuszczalna β-amyloidu. Niemcy dodają, że początkowo beta-amyloid występuje w postaci monomerów, potem pojawiają się agregaty dimerów, a na końcu tworzą się dojrzałe włókna. Blokada zwrotnego wychwytu kwasu L-glutaminowego jest powodowana przez rozpuszczalne dimery.
      Nasze dane zapewniają klarowne dowody na szybki i bezpośredni toksyczny wpływ dimerów - podkreśla Benedikt Zott. Naukowcy chcą wykorzystać nowo zdobytą wiedzę, by jeszcze dokładniej zrozumieć komórkowe mechanizmy ChA i dzięki temu opracować nowe strategie leczenia wczesnych stadiów choroby.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Chińscy naukowcy donoszą, że atrament mątw zawiera nanocząstki, które znacząco hamują rozwój guzów nowotworowych u myszy. Nanocząstki te składają się głównie z melaniny oraz aminokwasów, monosacharydów i metali. Uczeni wykazali, że zmieniają one działanie układu odpornościowego, a w połączeniu z naświetlaniem pozwalają niemal całkowicie zahamować jego wzrost.
      Artykuł o właściwościach atramentu mątw został opublikowany na łamach ACS Nano przez grupę naukową, na której czele stali Pang-Hu Zhou i Xian-Zheng Zhang z Uniwersytetu Wuhan.
      Odkryliśmy, że naturalne nanocząstki atramentu mątw charakteryzują się dobrą biokompatybilnością i mogą wspomagać jednocześnie immunoterapię i terapię fototermiczną guzów nowotworowych. Nasze osiągnięcia mogą zainspirować kolejne badań nad zastosowaniem w medycynie naturalnych materiałów, mówi Zhang.
      Immunoterapia przeciwnowotworowa polega na stymulowaniu układu odpornościowego do walki z nowotworem. Jedna ze strategii polega na zaangażowaniu leukocytów. Makrofagi to główny rodzaj leukocytów występujących w niektórych guzach. Dzielą sę one na dwa fenotypy: M1 i M2. Fenotyp M1 niszczy komórki nowotworowe w procesie fagocytozy oraz aktywowania komórek T. Z kolei fenotyp M2 wycisza działanie układu odpornościowego, pozwalając guzowi na wzrost. W guzach nowotworowych liczba M2 jest niemal zawsze większa niż liczba M1.
      W ostatnich czasach naukowcy pracują nad molekułami i przeciwciałami, które zamieniałyby makrofagi M2 w M1. Jednocześnie projektują też nanocząstki, które, pod wpływem promieniowania, niszczą komórki nowotworowe w procesie ablacji termicznej. Jednak uzyskanie takich nanocząstek jest kosztowne i skomplikowane. Z tego też względu niektórzy badacze zaczęli poszukiwać odpowiednich nanocząstek w naturze. Zauważono już, że pożądane właściwości wykazują niektóre bakterie i glony.
      Teraz chińscy naukowcy informują, że do leczenia nowotworów można wykorzystać nanocząstki z atramentu mątw. Po potwierdzeniu ich biokompatybilności naukowcy przeprowadzili serię eksperymentów zarówno in vitro, jak i in vivo. Podczas badan in vitro zauważono, że potraktowanie nanocząstek promieniowaniem w bliskiej podczerwieni zabiło niemal 90% komórek guza.
      W czasie badań na myszach nanocząstki działały skutecznie zarówno same, jak i w połączeniu z promieniowaniem. Promieniowanie poprawiało skuteczność zwalczania guzów. Badania obrazowe wykazały, że u myszy leczonych nanocząstkami z atramentu dochodziło do znacznie mniejszej liczby przerzutów, a połączenie nanocząstek i promieniowania niemal całkowicie hamowało rozwój guza.
      Po przeprowadzeniu analizy genetycznej zidentyfikowano 194 geny, które w różny sposób były powiązane z oddziaływaniem nanocząstek na guza. Znaleziono też szlak sygnałowy, odpowiedzialny za zamianę makrofagów M2 w M1. Prowadził on nie tylko do zwiększonej fagocytozy komórek nowotworowych, ale również stymulował układ odpornościowy do innych działań, z których wiele odgrywało rolę w powstrzymaniu wzrostu guza.

      « powrót do artykułu
×
×
  • Create New...