Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Przeprowadzono testy pierwszego uniwersalnego, programowalnego komputera kwantowego. Odbyły się one w warunkach laboratoryjnych i ujawniły sporo problemów, które muszą zostać rozwiązane, zanim tego typu komputer pojawi się poza laboratorium.

Podczas testów prowadzonych przez zespół Davida Hanneke użyto urządzenia skonstruowanego przez amerykański Narodowy Instytut Standardów i Technologii (NIST). Maszyna wykonuje obliczenia na dwóch kubitach (kwantowych bitach).

Obliczenia kwantowe były wykonywane już wcześniej, jednak dotychczas udawało się je przeprowadzać tylko dla pewnych specyficznych algorytmów. Teraz amerykańscy naukowcy pokazali, w jaki sposób wykonywać każdy rodzaj kwantowych obliczeń za pomocą tego samego urządzenia.

Jego sercem jest pokryta złotem płytka aluminium. Umieszczono na niej elektromagnetyczną pułapkę o średnicy 200 nanometrów, w której uwięziono dwa jony magnezu i dwa berylu. Magnez działa jak rodzaj "zamrażarki", eliminując niepożądane wibracje i utrzymując stabilność systemu jonów.

Całość uzupełniały lasery, w których świetle zakodowano kwantowe bramki logiczne. Seria impulsów z zakodowanymi bramkami trafia w jony, a wyniki są odczytywane przez inny laser.

Spośród nieskończonej liczby operacji, które można przeprowadzić na dwóch kubitach, wybrano 160 przypadkowych, by sprawdzić uniwersalny charakter komputera. Podczas każdej z operacji oba jony berylu były ostrzeliwane impulsami lasera, w których zakodowano 31 różnych bramek logicznych. Każdy ze 160 programów został uruchomiony 900 razy. Uzyskane wyniki porównano z teoretycznymi wyliczeniami i okazało się, że maszyna pracuje tak, jak to przewidziano. Stwierdzono, że każda bramka logiczna pracuje z ponad 90-procentową dokładnością, jednak po ich połączeniu system osiągnął dokładność około 79%. Działo się tak dlatego, że istnieją niewielkie różnice w intensywności impulsów z różnymi zakodowanymi bramkami. Ponadto impulsy muszą być rozdzielane, odbijane i przechodzą wiele innych operacji, przez co wprowadzane są kolejne błędy.

Mimo osiągnięcia dobrych rezultatów, system musi być znacznie poprawiony. Naukowcy z NIST mówią, że musi on osiągnąć dokładność rzędu 99,99% zanim trafi do komputerów. By tego dokonać należy poprawić stabilność laserów i zmniejszyć liczbę błędów wynikających z interakcji światła z komponentami optycznymi.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Misja Psyche jeszcze nie dotarła do celu, a już zapisała się w historii podboju kosmosu. Głównym jej celem jest zbadanie największej w Układzie Słonecznym asteroidy Psyche. Przy okazji NASA postanowiła przetestować technologię, z którą eksperci nie potrafili poradzić sobie od dziesięcioleci – przesyłanie w przestrzeni kosmicznej danych za pomocą lasera. Agencja poinformowała właśnie, że z Psyche na Ziemię trafił 15-sekudowy materiał wideo przesłany z odległości 31 milionów kilometrów z maksymalną prędkością 267 Mbps. To niemal 2-krotnie szybciej niż średnia prędkość szerokopasmowego internetu w Polsce.
      To, czego właśnie dokonała NASA jest nie zwykle ważnym osiągnięciem. Pozwoli bowiem na znacznie sprawniejsze zbieranie danych z instrumentów pracujących w przestrzeni kosmicznej i zapewni dobrą komunikację z misjami załogowymi odbywającymi się poza orbitą Ziemi.
      Sygnał z Psyche potrzebował około 101 sekund, by dotrzeć do Ziemi. Dane, przesyłane przez laser pracujący w bliskiej podczerwieni trafiły najpierw do Hale Teelscope w Palomar Observatory w Kalifornii. Następnie przesłano je do Jet Propulsion Laboratory w Południowej Kalifornii, gdzie były odtwarzane w czasie rzeczywistym podczas przesyłania. Jak zauważył Ryan Rogalin, odpowiedzialny za elektronikę odbiornika w JPL, wideo odebrane w Palomar zostało przesłane przez internet do JPL, a transfer danych odbywał się wolniej, niż przesyłanie danych z kosmosu. Podziwiając tempo transferu danych nie możemy zapomnieć też o niezwykłej precyzji, osiągniętej przez NASA. Znajdujący się na Psyche laser trafił z odległości 31 milionów kilometrów w 5-metrowe zwierciadło teleskopu. Sam teleskop to również cud techniki. Jego budowę ukończono w 1948 roku i przez 45 lat był najdoskonalszym teleskopem optycznym, a jego zwierciadło główne jest drugim największym zwierciadłem odlanym w całości.
      Po co jednak prowadzić próby z komunikacją laserową, skoro od dziesięcioleci w przestrzeni kosmicznej z powodzeniem przesyła się dane za pomocą fal radiowych? Otóż fale radiowe mają częstotliwość od 3 Hz do 3 Thz. Tymczasem częstotliwość pracy lasera podczerwonego sięga 300 THz. Zatem transmisja z jego użyciem może być nawet 100-krotnie szybsza. Ma to olbrzymie znaczenie. Chcemy bowiem wysyłać w przestrzeń kosmiczną coraz więcej coraz doskonalszych narzędzi. Dość wspomnieć, że Teleskop Webba, który zbiera do 57 GB danych na dobę, wysyła je na Ziemię z prędkością dochodzącą do 28 Mb/s. Zatem jego systemy łączności działają 10-krotnie wolniej, niż testowa komunikacja laserowa.
      Zainstalowany na Psyche Deep Space Optical Communication (DSOC) uruchomiono po raz pierwszy 14 listopada. Przez kolejne dni system sprawdzano i dostrajano, osiągając coraz szybszy transfer danych i coraz większą precyzję ustanawiania łącza z teleskopem. W tym testowym okresie przesłano na Ziemię łącznie 1,3 terabita danych. Dla porównania, misja Magellan, która w latach 1990–1994 badała Wenus, przesłała w tym czasie 1,2 Tb.
      Misja Psyche korzysta ze standardowego systemu komunikacji radiowej. DSOC jest systemem testowym, a jego funkcjonowanie nie będzie wpływało na powodzenie całej misji.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Komputery kwantowe mogą bazować na różnych rodzajach kubitów (bitów kwantowych). Jednym z nich są kubity z fotonów, które o palmę pierwszeństwa konkurują z innymi rozwiązaniami. Mają one sporo zalet, na przykład nie muszą być schładzane do temperatur kriogenicznych i są mniej podatne na zakłócenia zewnętrzne niż np. kubity bazujące na nadprzewodnictwie i uwięzionych jonach. Pary splątanych fotonów mogą stanowić podstawę informatyki kwantowej. Jednak uzyskanie splatanych fotonów wymaga zastosowania nieporęcznych laserów i długotrwałych procedur ich dostrajania. Niemiecko-holenderska grupa ekspertów poinformowała właśnie o stworzeniu pierwszego w historii źródła splątanych fotonów na chipie.
      Dokonany przez nas przełom pozwolił na zmniejszenie źródła ponad 1000-krotnie, dzięki czemu uzyskaliśmy powtarzalność, długoterminową stabilność, skalowalność oraz potencjalną możliwość masowej produkcji. To warunki, które muszą być spełnione, by zastosować tego typu rozwiązanie w realnym świecie kwantowych procesorów, mówi profesor Michael Kues, dyrektor Instytutu Fotoniki na Leibniz Universität Hannover. Dotychczas źródła światła dla komputerów kwantowych wymagały zastosowania zewnętrznych, nieporęcznych systemów laserowych, których użyteczność była ograniczona. Poradziliśmy sobie z tymi problemami tworząc nową architekturę i różne systemy integracji podzespołów na układzie scalonym, dodaje doktorant Hatam Mahmudlu z grupy Kuesa.
      Naukowcy mówią, że ich układ scalony jest równie łatwy w użyciu, jak każdy innych chip. Żeby rozpocząć generowanie splątanych fotonów wystarczy układ zamontować i włączyć. Jak każdy inny układ scalony. Jego obsługa nie wymaga żadnego specjalnego doświadczenia. Zdaniem twórców układu, w przyszłości takie źródło może znaleźć się w każdym kwantowym procesorze optycznym.
      Dotychczas eksperci mieli olbrzymie problemy w zintegrowaniu na jednym chipie laserów, filtra i wnęki, gdyż nie istnieje żaden pojedynczy materiał, z którego można by stworzyć wszystkie te urządzenia. Rozwiązaniem okazało się podejście hybrydowe. Naukowcy na jednym chipie umieścili laser z fosforku indu, wnękę oraz filtr z azotku krzemu. W polu lasera, w wyniku spontanicznego nieliniowego procesu, dochodzi do powstania dwóch splątanych fotonów. Uzyskaliśmy wydajność i jakość wymaganą do zastosowania naszego chipa w kwantowych komputerach czy kwantowym internecie, zapewnia Kues. Nasze źródło światła wkrótce stanie się podstawowym elementem programowalnych fotonicznych procesorów kwantowych, uważa uczony. Szczegóły badań zostały opublikowane w Nature Photonics.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Komputery kwantowe mogą, przynajmniej teoretycznie, przeprowadzać obliczenia, które są poza zasięgiem tradycyjnych maszyn. Ich kluczowym elementem są splątane kwantowe bity, kubity. Splątanie jest jednak stanem niezwykle delikatnym, bardzo wrażliwym na wpływ czynników zewnętrznych, na przykład promieniowania kosmicznego. Powoduje ono, że średnio co 10 sekund dochodzi do katastrofalnego błędu i kwantowe układy scalone tracą dane. Może ono za jednym razem usunąć wszelkie dane z procesora nawet najbardziej zaawansowanej maszyny kwantowej.
      Fizyk Quian Xu z University of Chicago i jego koledzy poinformowali o opracowaniu metody, która aż o 440 000 razy wydłuża czas pomiędzy błędami powodowanymi przez promieniowanie kosmiczne. Zatem mają one miejsce raz na 51 dni.
      Badacze zaproponowali komputer kwantowy składający się z wielu układów scalonych z danymi, z których każdy posiada liczne nadprzewodzące kubity. Wszystkie te układy są połączone z układem pomocniczym, który zawiera dodatkowe kubity monitorujące dane. Wszystkie chipy korzystałyby ze standardowych metod korekcji błędów oraz dodatkowej korekcji błędów powodowanych przez promieniowanie kosmiczne. Dzięki temu, że dane są rozdzielone na różne układy, zniszczenia powodowane przez promieniowanie kosmiczne są ograniczane. Gdy już do nich dojdzie, układ pomocniczy, we współpracy z układami, których dane nie zostały uszkodzone przez promieniowanie, przystępuje do korekty i odzyskania utraconych danych. Komputer nie musi rozpoczynać pracy na nowo, gdy tylko niektóre układy utracą dane, Xu. Co więcej, metoda ta wykrywa i koryguje dane pojawiające się w układzie pomocniczym.
      Autorzy badań twierdzą, że ich metoda wymaga zaangażowania mniejszej ilości zasobów oraz żadnych lub niewielkich modyfikacji sprzętowych w porównaniu z dotychczasowymi próbami ochrony komputerów kwantowych przed promieniowaniem kosmicznym. W przyszłości chcieliby ją przetestować na chmurze kwantowej IBM-a lub procesorze Sycamore Google'a.
      Ze szczegółowym opisem metody można zapoznać się na łamach arXiv.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Aalto University, IQM Quantum Computers oraz VTT Technical Research Centre of Finland odkryli nowy nadprzewodzący kubit. Unimon bo o nim mowa, zwiększy dokładność obliczeń dokonywanych za pomocą komputerów kwantowych. Pierwsze bramki logiczne wykorzystujące unimony pracują z dokładnością 99,9%.
      Nieliczne współczesne komputery kwantowe wciąż nie są wystarczająco wydajne i nie dostarczają wystarczająco dokładnych danych, by można było je zaprzęgnąć do obliczeń rozwiązujących praktyczne problemy. Są najczęściej urządzeniami badawczo-rozwojowymi, służącymi pracom nad kolejnymi generacjami komputerów kwantowych. Wciąż zmagamy się z licznymi błędami powstającymi w 1- i 2-kubitowych bramkach logicznych chociażby wskutek zakłóceń z otoczenia. Błędy te są na tyle poważne, że uniemożliwiają prowadzenie praktycznych obliczeń.
      Naszym celem jest zbudowanie kwantowych komputerów, które nadawałyby się do rozwiązywania rzeczywistych problemów. To odkrycie jest ważnym kamieniem milowym dla IQM oraz znaczącym osiągnięciem na drodze ku zbudowaniu lepszych komputerów kwantowych, powiedział główny autor badań, profesor Mikko Möttönen z Aalto University i VTT, który jest współzałożycielem i głównym naukowcem IQM Quantum Computers.
      Unimony charakteryzują się zwiększoną anharmonicznością, pełną odpornością na szumy wywoływane prądem stałym, zmniejszoną wrażliwością na zakłócenia magnetyczne oraz uproszczoną budową, która wykorzystuje pojedyncze złącze Josephsona w rezonatorze. Dzięki temu w jednokubitowej bramce o długości 13 nanosekund udało się uzyskać dokładność od 99,8 do 99,9 procent na trzech kubitach unimonowych. Dzięki wyższej anharmoniczności czyli nieliniowości niż w transmonach [to wcześniej opracowany rodzaj kubitów, który ma zredukowaną wrażliwość za zakłócenia ze strony ładunku elektrycznego – red.], możemy pracować z unimonami szybciej, co prowadzi do pojawiania się mniejszej liczby błędów na każdą operację, wyjaśnia doktorant Eric Hyyppä.
      Na potrzeby badań fińscy naukowcy skonstruowali układy scalone, z których każdy zawierał trzy kubity unimonowe. W układach użyto głównie niobu, z wyjątkiem złącz Josephsona, które zbudowano z aluminium. Unimony są bardzo proste, a mimo to mają liczne zalety w porównaniu z transmonami. Sam fakt, że już pierwsze uzyskane unimony działały tak dobrze, pozostawia dużo miejsca na ich optymalizację i osiągnięcie ważnych kamieni milowych. W następnym kroku badań chcemy zapewnić jeszcze lepszą ochronę przed szumem i zademonstrować bramki dwukubitowe, mówi profesor Möttönen.
      Więcej o unimonie można przeczytać na łamach Nature Communications.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      „Niemożliwy” unipolarny (jednobiegunowy) laser zbudowany przez fizyków z University of Michigan i Universität Regensburg może posłużyć do manipulowania kwantową informacją, potencjalnie zbliżając nas do powstania komputera kwantowego pracującego w temperaturze pokojowej. Laser taki może też przyspieszyć tradycyjne komputery.
      Światło, czyli promieniowanie elektromagnetyczne, to fala oscylująca pomiędzy grzbietami a dolinami, wartościami dodatnimi a ujemnymi, których suma wynosi zero. Dodatni cykl fali elektromagnetycznej może przesuwać ładunki, jak np. elektrony. Jednak następujący po nim cykl ujemny przesuwa ładunek w tył do pozycji wyjściowej. Do kontrolowania przemieszania informacji kwantowej potrzebna byłaby asymetryczna – jednobiegunowa – fala światła. Optimum byłoby uzyskanie całkowicie kierunkowej, unipolarnej „fali”, w której występowałby tylko centralny grzbiet, bez oscylacji. Jednak światło, jeśli ma się przemieszczać, musi oscylować, więc spróbowaliśmy zminimalizować te oscylacje, mówi profesor Mackillo Kira z Michigan.
      Fale składające się tylko z grzbietów lub tylko z dolin są fizycznie niemożliwe. Dlatego też naukowcy uzyskali falę efektywnie jednobiegunową, która składała się z bardzo stromego grzbietu o bardzo wysokiej amplitudzie, któremu po obu stronach towarzyszyły dwie rozciągnięte doliny o niskiej amplitudzie. Taka konstrukcja powodowała, że grzbiet wywierał silny wpływ na ładunek, przesuwając go w pożądanym kierunku, a doliny były zbyt słabe, by przeciągnąć go na pozycję wyjściową.
      Taką falę udało się uzyskać wykorzystując półprzewodnik z cienkich warstw arsenku galu, w którym dochodzi do terahercowej emisji dzięki ruchowi elektronów i dziur. Półprzewodnik został umieszczony przed laserem. Gdy światło w zakresie bliskiej podczerwieni trafiło w półprzewodnik, doszło do oddzielenia się elektronów od dziur. Elektrony poruszyły się w przód. Następnie zostały z powrotem przyciągnięte przez dziury. Gdy elektrony ponownie łączyły się z dziurami, uwolniły energię, którą uzyskały z impulsu laserowego. Energia ta miała postać silnego dodatniego półcyklu w zakresie teraherców, przed i po którym przebiegał słaby, wydłużony półcykl ujemny.
      Uzyskaliśmy w ten sposób zadziwiającą unipolarną emisję terahercową, w którym pojedynczy dodatni półcykl był czterokrotnie wyższy niż oba cykle ujemne. Od wielu lat pracowaliśmy nad impulsami światła o coraz mniejszej liczbie oscylacji. Jednak możliwość wygenerowania terahercowych impulsów tak krótkich, że efektywnie składały się z mniej niż pojedynczego półcyklu oscylacji była czymś niewyobrażalnym, cieszy się profesor Rupert Hubner z Regensburga.
      Naukowcy planują wykorzystać tak uzyskane impulsy do manipulowania elektronami w materiałach kwantowych w temperaturze pokojowej i badania mechanizmów kwantowego przetwarzania informacji. Teraz, gdy wiemy, jak uzyskać unipolarne terahercowe impulsy, możemy spróbować nadać im jeszcze bardziej asymetryczny kształt i lepiej przystosować je do pracy z kubitami w półprzewodnikach, dodaje doktorant Qiannan Wen.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...