Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Wybierzmy się na Kallisto

Rekomendowane odpowiedzi

Kallisto to trzeci co do wielkości księżyc w Układzie Słonecznym. Jego powierzchnia jest najciemniejsza spośród powierzchni księżyców galileuszowych, odbija tylko ok. 17% światła słonecznego. Ludzkość musiałaby żyć tam w ciągłej ciemności, a oprócz tego poradzić sobie z problemem zabójczego promieniowania. Długa podróż w kierunku Jowisza naraziłaby kosmicznych podróżników na zbyt wielką dawkę radioaktywnych substancji.

Dlatego w planach naukowców pojawia się wizja stworzenia nuklearnego silnika rakietowego, który pozwoliłby mierzyć czas podróży nie latami, a miesiącami. Oprócz tego ludzie musieliby poradzić sobie z przeżyciem promieniowania już na samej powierzchni księżyca. Rozwiązaniem dla przyszłych zdobywców kosmosu jest gruba powłoka lodowa, z której można stworzyć schrony, odbijające promieniowanie. Ta powłoka na Kallisto mierzy aż 200 km! Pod skorupą lodową znajduje się najprawdopodobniej ocean słonej wody o głębokości około 10 km. Pod oceanem jest już prawdopodobnie mieszanka 60%krzemu  z 40% wody, przy czym im głębiej, tym więcej krzemu.

Na Kallisto można też utworzyć bazę do eksploracji innego księżyca Jowisza - Europy. Powierzchnia tego księżyca jest bardzo równa i płaska. Stwierdzono niewiele wzniesień, które byłyby wyższe od kilkuset metrów. Nie groziłyby nam wspinaczki na olbrzymie szczyty, jak na innych ciałach niebieskich Z badań prowadzonych przez naukowców wynika, że w ciepłej wodzie tego księżyca może istnieć prymitywne życie. Na zdjęciach zrobionych przez sondę Galileo widać w pęknięciach ciemniejsze zabarwienie powierzchni - to najprawdopodobniej sole i uwodniony kwas siarkowy. Wiadomo także, że powierzchnia Europy podlega dynamicznym zmianom.

Chcesz wiedzieć więcej o możliwości zamieszkania na Kallisto i skolonizowania Europy? Oglądaj Kosmiczne wyzwania na Discovery Science, w piątek, 30 października o godzinie 21!

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Gdy po Ziemi wędrowały dinozaury, na Księżycu wybuchały wulkany, twierdzą naukowcy z Chińskiej Akademii Nauk. Takie wnioski płyną z analizy materiału zebranego przez misję Chang'e-5. Mamy wiele dowodów wskazujących na aktywność wulkaniczną na Księżycu, nie wiadomo jednak, jak długo ona trwała. Najmłodsze datowane skały wulkaniczne mają 2 miliardy lat. Z badań przeprowadzonych przez Chińczyków wynika jednak, że dinozaury były świadkami wybuchów wulkanów na satelicie naszej planety.
      Bi-Wen Wang, Qiu-Li Li i ich koledzy opisali na łamach Science wyniki badań nad materiałem przywiezionym przez Chang'e-5. Ta wystrzelona w 2020 roku misja wylądowała w północnym regionie Oceanus Procellarum, zebrała 1,7 kilograma próbek i w grudniu przywiozła je na Ziemię. Były to pierwsze próbki przywiezione bezpośrednio z Księżyca od czasu radzieckiej misji Luna 24 z 1976 roku i jednocześnie jedyne próbki z obszaru położonego tak daleko na północy.
      Wang i jego zespół przyjrzeli się około 3000 miniaturowych (wielkości od 20 do 400 mikrometrów) fragmentów szkliwa, które znalazły się w przywiezionym materiale. Szkliwo takie może powstawać w wyniku uderzeń meteorytów oraz erupcji wulkanicznych. wykorzystali przy tym badania składu próbek oraz pomiary stosunku izotopów, by odróżnić od siebie oba rodzaje szkliwa. Zdecydowaną większość badanych fragmentów uznali za powstałe w wyniku olbrzymiej temperatury powstałej w trakcie uderzenia meteorytów. Jednak trzy fragmenty zostały uznane, na podstawie składu chemicznego i badań izotopów siarki, za pochodzące z aktywności wulkanicznej. Co więcej, ich skład chemiczny był bardzo podobny do składu szkła wulkanicznego zebranego przez astronautów misji Apollo.
      Jednak najważniejsze było określenie tych trzech fragmentów. Datowanie metodą uranowo-ołowiową wykazało, że maja one 123 miliony lat (±15 milionów). Dodatkowo wysoka zawartość toru i pierwiastków ziem rzadkich dodatkowo potwierdza tak niedawny wulkanizm na Księżycu.
      Wyniki badań są zaskakujące. Jeśli chińscy uczeni mają rację, oznacza to, że Księżyc był aktywny wulkanicznie niemal przez całą swoją historię. Inne dowody wskazują bowiem na wulkanizm sprzed 4,4 miliarda lat temu. Przez długi czas uważano, że procesy wulkaniczne zatrzymały się co najmniej miliard lat temu. Pojawiają się jednak sugestie, że być może procesy takie trwały jeszcze około 100 milionów lat temu.
      Teraz Chińczycy jako pierwsi donoszą o wynikach badań laboratoryjnych wskazujących, że Księżyc był aktywny jeszcze całkiem niedawno. To zaś rodzi pytanie, czy głęboko pod jego powierzchnią istnieją pierwiastki radioaktywne zdolne do wytworzenia tak dużo energii, by istniały tam komory magmowe.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wody na Księżycu jest znacznie mniej, niż dotychczas sądzono, informuje Norbert Schörghofer z Planetary Science Institute w Arizonie, współautor badań, których wyniki opublikowano na łamach Science Advances. Obliczenia przeprowadzone przez Schörghofera i Ralucę Rufu z Southwest Research Insitute w Kolorado, mają olbrzymie znaczenie nie tylko dla zrozumienia historii Księżyca, ale również dla założenia stałej bazy na Srebrnym Globie. Bazy, która ma wspierać załogowe wyprawy na Marsa. Kevin Cannon, geolog z Colorado School of Mines, który prowadzi spis obiecujących miejsc do lądowania i prac górniczych na Księżycu, już zaczął aktualizować ją w oparciu o wyliczenia Schörghofera i Rufu.
      Woda na Księżycu, w postaci lodu, znajduje się w stale zacienionych obszarach księżycowych kraterów. Tylko tam ma szansę przetrwać. Te stale zacienione obszary to jedne z najchłodniejszych miejsc w Układzie Słonecznym. Na wodę możemy liczyć przede wszystkim w głębokich kraterach znajdujących się w pobliżu biegunów. Tam bowiem kąt padania promieni słonecznych wynosi zaledwie 1,5 stopnia. Jednak nie zawsze tak było. Przed miliardami lat oś Księżyca była nachylona pod zupełnie innym kątem, różniącym się od obecnego może nawet o 77 stopni. Taka orientacja wystawiała zaś bieguny na działanie Słońca, eliminując wszelkie zacienione obszary, a co za tym idzie, odparowując znajdujący się tam lód.
      Wiemy, że Księżyc powstał przed około 4,5 miliardami lat w wyniku uderzenia w tworzącą się Ziemię planety wielkości Marsa. Od tego czasu migruje on coraz dalej od nasze planety. Początkowo znajdował się pod przemożnym wpływem sił pływowych Ziemi, obecnie większą rolę odgrywają siły pływowe Słońca i ta właśnie zmiana doprowadziła do zmiany orientacji osi Księżyca. Zasadnicze pytanie brzmi, kiedy do niej doszło. Jeśli wcześniej, to na Księżycu powinno być więcej lodu, jeśli zaś później, lodu będzie mniej.
      Dopiero w 2022 roku astronomowie z Obserwatorium Paryskiego rozwiązali stary problem niezgodności danych geochemicznych z fizycznym modelem oddziaływania sił pływowych. Schörghofer i Rufu skorzystali z pracy Francuzów i utworzyli udoskonalony model pokazujący zmiany osi Księżyca w czasie. To zaś pozwoliło mi stwierdzić, ile lodu może istnieć w obecnych stale zacienionych obszarach.
      Z ich obliczeń wynika, że najstarsze stale zacienione obszary utworzyły się nie więcej niż 3,94 miliarda lat temu. Są zatem znacznie młodsze, niż dotychczas sądzono, a to oznacza, że wody na Księżycu jest znacznie mniej. Nie możemy się już spodziewać, że istnieją tam warstwy czystego lodu o grubości od dziesiątków to setek metrów, mówi Schörghofer.
      Uczony dodaje jednak, że nie należy podchodzić do tych badań wyłącznie pesymistycznie. Dostarczają one bowiem dokładniejszych danych na temat miejsc, w których powinien znajdować się lód. Ponadto z wcześniejszych badań, które Schörghofer prowadził wraz z Paulem Hayne z University of Colorado i Odedem Aharonsonem z izraelskiego Instytut Weizmanna, wynika, że stale zacienionych obszarów jest więcej niż sądzono, a lód może znajdować się nawet w takich, które liczą sobie zaledwie 900 milionów lat. Wnioski płynące z badań są więc takie, że lodu na Księżycu jest znacznie mniej, ale jest on w większej liczbie miejsc.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Gwałtowne ochłodzenie prawdopodobnie sprowadziło zagładę na pierwszych ludzi, którzy zasiedlili Europę, informują naukowcy z University College London (UCL). W magazynie Science ukazał się artykuł, w którym naukowcy opisują nieznany dotychczas epizod ochłodzenia klimatu, do jakiego doszło 1,1 miliona lat temu. Ich zdaniem, doprowadziło to do wymarcia całej europejskiej populacji człowieka.
      Najstarsze w Europie szczątki rodzaju znaleziono na Półwyspie Iberyjskim. Sugerują one, że nasi krewniacy byli w Europie już 1,4 miliona lat temu. Przybyli z południowo-zachodniej Azji. Dotychczas sądzono, że gdy już człowiek w Europie się pojawił, to w niej pozostał. Nasze odkrycie ekstremalnego ochłodzenia sprzed 1,1 miliona lat rzuca wyzwanie teorii o ciągłym zamieszkaniu Europy przez człowieka, mówi jeden z głównych autorów badań, profesor Chronis Tzedakis.
      Zajmujący się badaniem paleoklimatu specjaliści z UCL, Uniwersytetu w Cambridge oraz Najwyższej Rady Badań Naukowych (CSIC) w Barcelonie, przeanalizowali skład chemiczny mikroorganizmów morskich oraz pyłki z rdzeni pobranych u wybrzeży Portugalii. Odkryli nieznaną gwałtowną zmianę klimatu, w czasie której temperatura powierzchni oceanu u wybrzeży dzisiejszej Lizbony spadła poniżej 6 stopni Celsjusza – była więc ponaddwukrotnie niższa niż obecnie w najzimniejszych miesiącach zimowych – a na lądzie zasięg zwiększyły obszary półpustynne.
      Ku naszemu zdumieniu odkryliśmy, że ochłodzenie sprzed 1,1 miliona lat było porównywalne z najbardziej ekstremalnymi warunkami pogodowymi ostatniej epoki lodowej, stwierdził główny autor badań, doktor Vasiliki Margali. Tak głębokie ochłodzenie musiało wywrzeć olbrzymi wpływ na ówczesne niewielkie społeczności łowiecko-zbierackie, gdyż wczesnym ludziom brakowało takich mechanizmów adaptacyjnych jak wystarczająca tkanka tłuszczowa, umiejętność rozpalania ognia, wyrobu odpowiedniej jakości okryć czy znajdowania odpowiednich schronień, dodaje profesor Nick Ashton z British Museum.
      Naukowcy nie chcieli poprzestać wyłącznie na przypuszczeniach. Profesor Axel Timmermann i jego zespół z Uniwersytetu Narodowego w Pusan wykorzystali superkomputer do stworzenia symulacji ówczesnych warunków i ich wpływu na ludzi. Wykorzystali przy tym dane paleontologiczne i archeologiczne, tworząc model habitatu ludzkiego. Nasze wyniki pokazały, że 1,1 miliona lat temu warunki klimatyczne w basenie Morza Śródziemnego nie pozwalały na istnienie tam ludzi.
      Uzyskane wyniki sugerują, że ludzie zamieszkujący południe Europy wyginęli we wczesnym plejstocenie. To może też tłumaczyć, dlaczego nie dysponujemy żadnymi śladami człowieka z Europy z okresu kolejnych 200 000 lat. Według tego scenariusza Europa została ponownie skolonizowana około 900 000 lat temu, tym razem przez bardziej odporne społeczności, którym zmiany ewolucyjne i kulturowe pozwoliły na przeżycie, dodaje profesor Chris Stringer z Muzeum Historii Naturalnej w Londynie.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Europejska Agencja Kosmiczna przeprowadziła udany start misji Juice (Jupiter Icy Moons Explorer), która – jak sama nazwa wskazuje – ma zbadać trzy Galileuszowe księżyce Jowisza, Ganimedesa, Kallisto i Europę. Na pokładzie misji znalazły się polskie urządzenia, wysięgniki firmy Astronika, na których zamontowano sondy do pomiarów plazmy. Mają one rozłożyć się na odległość 3 metrów od satelity i ustawić czujniki pod kątem 135 stopni, by umożliwić im zbadanie plazmy znajdującej się w atmosferze Jowisza.
      Juice wystartowała o godzinie 14:14 czasu polskiego, a 50 minut później stacja w Australii odebrała sygnał z pojazdu. ESA wstrzymała się z ogłoszeniem udanego startu do godziny 15:33, kiedy to nadeszły informacje o udanym rozłożeniu 27-metrowych paneli słonecznych. Dzięki nim pojazd będzie mógł polecieć do Jowisza. Juice to ostatnia misja wystrzelona za pomocą rakiety Ariane 5. Zadebiutowały one w 1999 roku podczas misji XMM-Newton, a w 2021 roku za pomocą jednej z nich wystrzelono Teleskop Kosmiczny Jamesa Webba.
      Dzięki wcześniejszym misjom w kierunku Jowisza wiemy, że na wymienionych księżycach znajdują się zamarznięte oceany. To jedne z najbardziej obiecujących miejsc, w których może istnieć pozaziemskie życie w Układzie Słonecznym. Juice powinno przybliżyć nas do odpowiedzi na pytanie o jego obecność tam.
      Dotychczas ludzkość zorganizowała 9 misji, które badały Jowisza. Na orbicie planety wciąż pracuje, wystrzelona w 2011 roku, sonda Juno. W styczniu 2021 NASA przedłużyła jej misję do września 2025. Od tamtej pory Juno dokonała przelotu w pobliżu Ganimedesa i Europy.
      Ponad 400 lat temu Galileusz odkrył księżyce Jowisza, co zaszokowało świat renesansu i zrewolucjonizowało nasze myślenie o miejscu ludzkości we wszechświecie. Dzisiaj wysyłamy zestaw przełomowych narzędzi, które dadzą nam wyjątkowy ogląd tych księżyców, stwierdziła Carole Mundell, dyrektor ds. naukowych ESA.
      Teraz przez 2,5 tygodnia Juice będzie rozkładała liczne anteny i instrumenty. Podczas ośmioletniej podróży do Jowisza pojazd czterokrotnie skorzysta z asysty grawitacyjnej Ziemi i Wenus. Pierwszy taki przelot odbędzie się w kwietniu przyszłego roku, kiedy to Juice najpierw minie Księżyc, a 1,5 doby później wykorzysta oddziaływanie grawitacyjne Ziemi.
      Sondę wyposażono w osłony, które mają chronić jej elektronikę przed olbrzymimi dawkami promieniowania w pobliżu Jowisza oraz w wielowarstwową izolację, dzięki której wewnątrz urządzenia utrzymywana będzie stabilna temperatura. Izolacja będzie musiała poradzić sobie z temperaturami ponad 250 stopni Celsjusza podczas przelotu w pobliżu Wenus i -230 stopniami w pobliżu Jowisza.
      Obecnie planuje się, że podczas pobytu na orbicie Jowisza Juice wykona 35 przelotów w pobliżu trzech wspomnianych księżyców, a następnie wejdzie na orbitę Ganimedesa. To zaś będzie wymagało olbrzymiej precyzji podczas nawigacji. Mają ją zapewnić nadajniki w Hiszpanii, Argentynie i Australii oraz Europejskie Centrum Operacji Kosmicznych w Darmstadt. Będzie to jedna z najbardziej skomplikowanych misji podjętych przez ESA. Od przelotów w pobliżu księżyców Jowisza w ciągu 2,5 roku poprzez olbrzymie wyzwanie jakim jest zmiana orbity między olbrzymim Jowiszem, a Ganimedesem, opisuje trudności Angela Dietz, zastępca menadżera misji ds. operacyjnych.
      Głównym celem naukowym misji jest Ganimedes, księżyc większy od Merkurego. Juice spędzi na jego orbicie około 9 miesięcy. Ganimedes nie tylko pokryty jest oceanem, ale to jedyny w  w Układzie Słonecznym księżyc generujący własne pole magnetyczne. Tylko dwa inne ciała skaliste – Merkury i Ziemia – generują takie pole.
      Mamy tutaj do czynienia z interesującym zjawiskiem niewielkiej „bańki magnetycznej” generowanej przez Ganimedesa, która znajduje się wewnątrz większej bańki generowanej przez Jowisza. Obie wchodzą ze sobą w skomplikowane interakcje. Dzięki misji Juice naukowcy chcą poznać strukturę wewnętrzną Ganimedesa, co powinno dać odpowiedź na pytanie o sposób generowania i utrzymywania pola magnetycznego. To zaś pozwoli zrozumieć, w jaki sposób księżyc ewoluował i czy może na nim istnieć życie.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Już 14 listopada satelita typu CubeSat CAPESTONE dotrze w okolice Księżyca i będzie pierwszym pojazdem w historii, który zajmie unikatową wydłużoną orbitę wokół Srebrnego Globu. Orbita ta będzie wykorzystywana w ramach programu Artemis, a CAPESTONE ma przetrzeć drogę dla stacji kosmicznej Gateway, która zostanie zbudowana na orbicie Księżyca. Zadaniem CAPESTONE'a jest przetestowanie innowacyjnych technologii nawigacyjnych i zweryfikowanie danych o dynamice orbity, na której wcześniej nie umieszczano pojazdów.
      Mowa tutaj o orbicie NRHO (near-rectilinear halo orbit), która w wyniku oddziaływania pomiędzy Ziemią a Księżycem jest orbitą półstabilną. Znajdujący się tam obiekt trzyma się orbity w znacznej mierze dzięki grawitacji, więc umieszczone na niej pojazdy zużyją minimalne ilości paliwa na korekty orbity. NASA planuje wykorzystanie NRHO między innymi do zaparkowanie tam stacji kosmicznej Gatway na co najmniej 15 lat.
      Przez ostatnie 4 miesiące pojazd CAPSTONE (Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment) podróżował w kierunku Księżyca niezwykle wydłużoną trasą zwaną balistycznym transferem księżycowym. Trasa ta wykorzystuje grawitację Ziemi,  Księżyca i Słońca do przemieszczenia pojazdu pomiędzy Ziemią a Księżycem. Jest niezwykle efektywna pod względem energetycznym, wymaga zużycia niewielkiej ilości paliwa, ale podążający nią pojazd musi oddalić się od Ziemi na odległość 1–2 milionów kilometrów i powrócić w jej okolice.
      CAPSTONE został wystrzelony 28 czerwca z Nowej Zelandii. Podczas czteromiesięcznej podróży wykonał pięć manewrów. Dzięki nim pojazd ma idealnie wejść na NRHO. Precyzja jest tutaj bardzo ważna. Poruszający się w prędkością ponad 6100 km/h pojazd musi w odpowiednim czasie znaleźć się w odpowiednim miejscu orbity. Ma to nastąpić 14 listopada o 0:48 czasu polskiego. NASA ocenia, że będzie potrzebowała kolejnych pięciu dni na analizę danych, przeprowadzenie dwóch dodatkowych manewrów i potwierdzenie umieszczenia pojazdu na właściwej orbicie.
      Pojazd ma pozostać na NRHO przez co najmniej sześć miesięcy. W tym czasie co 6,5 doby uruchomi silniki, by skorygować orbitę. Dostarczy w ten sposób danych, dzięki którym inżynierowie przyszłych misji będą mogli zoptymalizować zużycie paliwa na NRHO. Dodatkowo misja przetestuje innowacyjne systemy nawigacyjne, pozwalające na precyzyjne określanie pozycji pojazdów znajdujących się na NRHO względem innych pojazdów. W ten sposób ma zmniejszyć się zależność pojazdów na NRHO od łączności z Ziemią. CAPSTONE będzie określał swoją pozycję względem Lunar Reconnaissance Orbitera, który od 2009 roku znajduje się na orbicie Księżyca. Dzięki temu w przyszłości pojazdy z NRHO będą mogły wysyłać na Ziemię szybciej istotne dane dotyczące np. prowadzonych przez siebie badań, gdyż zwolni się część pasma z anteny skierowanej w stronę naszej planety.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...