Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Sposób na argentyńskiego przybysza
dodany przez
KopalniaWiedzy.pl, w Nauki przyrodnicze
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Wśród mrówek z gatunku Megaponera analis zaobserwowano niezwykłe zjawisko. Zwierzęta zajmują się towarzyszami, którzy odnieśli rany w walce. M. analis spędzają całe dnie na poszukiwaniu gniazd termitów, atakowaniu ich i polowaniu na te owady.
Erik Thomas Frank i jego koledzy z Uniwersytetu w Würzburgu przez dwa lata obserwowali M. analis w Parku Narodowym Comoé na Wybrzeżu Kości Słoniowej. Śledzili 52 kolonie, które przeprowadziły 420 najazdów na gniazda termitów.
Atak rozpoczyna się, gdy wysłana na zwiad mrówka napotka termitierę. Wraca wówczas do własnego gniazda, z którego wyrusza kolumna bojowa licząca 200-500 samic. Po przybyciu na miejsce rozdziela się ona na grupy. Większe mrówki rozkopują termitierę, a mniejsze wchodzą do środka, zabijają termity i wyciągają ciała na zewnątrz. Wówczas większe mrówki biorą owady i przenoszą je do własnego gniazda. Do wyżywienia kolonii liczącej 1000 mrówek konieczne jest przeprowadzenie 2-4 napaści każdego dnia.
Bitwy z termitami są niebezpieczne. Obrońcy często odgryzają głowy i kończyny agresorom lub wbijają się w ich ciała. Rany odnoszą głównie mniejsze mrówki, które operują wewnątrz gniazd termitów. Poranione mrówki starają się wyjść z termitier.
Okazało się, że ranni nie są pozostawiani samym sobie. Po bitwie większe mrówki przeszukują pobojowisko. Mimo, że są ślepe, mają dobry zmysł węchu. Ranne mrówki wydzielają spod szczęk specjalne substancje zapachowe, które udało się zidentyfikować jako disiarczek dimetylu i trisiarczek dimetylu. Gdy większe wyczują mrówkę, która je wydzieliła, zabierają ją do własnego gniazda, nawet jeśli muszą przy tym transportować wbite w jej ciało termity. Na miejscu pozostawiane są tylko martwe i śmiertelnie ranne mrówki. Po powrocie do gniazda z ciał rannych mrówek usuwane są termity. Mrówki, które utraciły kończyny, mają początkowo trudności z poruszaniem się, ale w ciągu 24 godzin ponownie są aktywne. Frank i jego zespół obliczyli, że każdego dnia w ten sposób ratowanych jest 9-15 mrówek, a 95% z nich szybko wraca do normalnej aktywności i ponownie bierze udział w bitwach. A mowa tu tylko o najciężej rannych mrówkach. Z każdej bitwy z długotrwałymi obrażeniami wychodzi co najmniej 21 procent mrówek.
To właśnie duży odsetek rannych wyjaśnia altruizm mrówek. Ich porzucanie byłoby równoznaczne z pozbywaniem się produktywnych członków społeczności. Naukowców zastanowiło jednak noszenie rannych przez inne mrówki. Czy nie wymaga to zbytniego wysiłku? Wybrali więc 20 przypadkowych rannych mrówek i zmusili je do samodzielnego marszu do gniazda. Okazało się, że 30% z nich tam nie dotarła. Większość z nich została upolowana przez pająki i inne gatunki mrówek. Jedna zaś padła z wyczerpania, gdyż musiała ciągnąć ze sobą dwa wbite w jej ciało termity. Noszenie rannych ma więc sens, gdyż pozwala im przeżyć.
Okazało się też, że mrówki ratują rannych wyłącznie wtedy, gdy wracają do gniazda po bitwie. Gdy na drodze kolumny maszerującej w kierunku gniazda termitów ułożono ranną mrówkę, jej towarzysze ją zignorowali. Jednak gdy eksperyment powtórzono, gdy kolumna wracała po napaści na termity, ranna natychmiast została zabrana do gniazda. Nie wystarczy więc, by mrówka wydzieliła odpowiednie substancje. Musi to jeszcze zrobić w odpowiednim kontekście.
Na ewolucję takiego właśnie zachowania miała zapewne wpływ niewielka liczebność kolonii M. analis. Każdego dnia przychodzi w nich na świat zaledwie około 13 młodych, zatem każdy osobnik się liczy.
Naukowcy z Würzburga zauważyli też, że podobne sygnały chemiczne wysyłają też mrówki z gatunku Paltothyreus tarsatus. W ich przypadku jednak sygnały takie powodowały, że mrówka, która je wyczuła, zaczynała szaleńczo kopać w ziemi. Okazało się, że mrówki P. tarsatus często padają ofiarami mrówkolwowatych, które przygotowują z piasku pułapki. Uwalniane w stresie sygnały chemiczne to prośba o wykopanie z takiej pułapki.
Zdaniem uczonych uruchamiane związkami chemicznymi zachowania M. analis oraz powodowane empatią i innymi czynnikami zachowania ludzi, którzy dbają o rannych czy chorych wyewoluowały osobno, ale mają podobne podstawy. Zachowywanie przy życiu członków własnej grupy przynosi grupie korzyści.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Mrówki Solenopsis richteri posługują się piaskiem jak narzędziem, by pozyskać ciekły pokarm (roztwór cukru), nie tonąc w nim. Autorzy artykułu z pisma Functional Ecology podkreślają, że to pokazuje, że dostosowują strategię korzystania z narzędzi do ryzyka związanego z żerowaniem.
S. richteri pochodzą z Ameryki Południowej. Po introdukcji do południowych USA są tu uznawane za gatunek inwazyjny.
Gdy mrówkom zapewniono niewielkie pojemniczki z roztworem cukru, dzięki hydrofobowemu egzoszkieletowi były w stanie unosić się na powierzchni i żerować. Gdy jednak naukowcy zmniejszyli napięcie powierzchniowe, S. richteri zaczęły przenosić piasek, by spuścić ciecz z naczynia.
Odkryliśmy, że mrówki budują strukturę z piasku, która skutecznie wyciąga ciecz z pojemnika, tak aby później można ją było zebrać - opowiada dr Aiming Zhou z Huazhong Agricultural University. Ta niesamowita umiejętność nie tylko zmniejszała ryzyko utonięcia, ale i zapewniała większą powierzchnię do zbierania roztworu.
Okazało się, że struktury z piasku były tak skuteczne, że w ciągu 5 minut mogły wyciągać z pojemniczków niemal połowę cieczy.
Naukowcy zmieniali napięcie powierzchniowe za pomocą surfaktantu. Gdy jego stężenie wynosiło ponad 0,05%, co przekładało się na znaczące ryzyko utonięcia, mrówki budowały struktury z piasku. Nie tworzyły ich, żerując na czystym roztworze cukru. Podczas eksperymentów owadom dostarczano piasek o różnej wielkości ziaren; w ten sposób można było określić ich preferencje budowlane w takiej sytuacji.
Wiemy, że niektóre gatunki mrówek są w stanie posługiwać się narzędziami, szczególnie przy zbieraniu ciekłego pokarmu. Byliśmy jednak zaskoczeni niesamowitymi umiejętnościami S. richteri w tym zakresie - dodaje dr Jian Chen, entomolog z amerykańskiego Departamentu Rolnictwa.
Dr Zhu podkreśla, że konieczne są dalsze badania. Nasze eksperymenty były prowadzone w laboratorium i dotyczyły wyłącznie S. richteri. Kolejnym krokiem powinno być ustalenie, jak bardzo zachowanie to jest rozpowszechnione u innych gatunków mrówek.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W gniazdach brazylijskich mrówek z plemienia Attini zidentyfikowano związek przeciwgrzybiczy, który może znaleźć praktyczne zastosowanie w medycynie. Od dawna wiadomo, że Attini hodują grzyby, którymi się pożywiają. Bakterie Psuedonocardia i Streptomyces wytwarzają zaś metabolity, które chronią mrówcze uprawy przed patogenami. Jednak dotychczasowe badania pokazywały, że mimo iż mrówki na różnych obszarach mają wspólnego przodka, to metabolity bakterii miały różną strukturę.
Teraz na łamach ACS Central Science czytamy, że udało się zidentyfikować pierwszy związek przeciwgrzybiczny, który występuje w gniazdach mrówek w różnych lokalizacjach na terenie Brazylii i który można zastosować w medycynie.
Opisaliśmy strukturę attinimycyny, jej geny oraz jej ewolucyjne związki z oksaheliną A (oxachelin A) oraz cahuitamycyną A (cahuitamycin A). To trzy nierybosomalne peptydy, będące strukturalnymi izomerami o różnej sekwencji peptydowej, stwierdzają autorzy badań.
Attinimycyna wykazuje żelazozależną aktywność przeciwgrzybiczą skierowaną przeciwko grzybiczym patogenom, ale nie przeciwko grzybom uprawianym przez mrówki. W badaniach in vivo wykazała ona silne działanie przeciwko mysiemu modelowi infekcji Candida albicans. Siła oddziaływania attinimycyny jest porównywalna do azoli przeciwgrzybiczych. Wykrycie attinimycyny zarówno w gniazdach mrówek jak i na ciele robotnic to dowód na rolę, jaką odgrywa attinimycyna w ochronie upraw grzybów przed patogenami, mówią naukowcy z Uniwersytetu w São Paulo.
Bliższe badania pokazały, że attinimycyna wytwarzana jest przez niemal 2/3 szczepów Pseudonocardia. Jako, że siła działania nowego związku jest porównywalna do azoli (np. ketokonazol, mikonazol czy flukonazol), uczeni mają nadzieję, że przyda się on w praktyce klinicznej.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Mrówki hamują co najmniej 14 chorób roślinnych. Jest to możliwe, bo uwalniają z gruczołów szereg antybiotyków. Na ich odnóżach i innych częściach ciała znajdują się też kolonie bakterii wydzielających antybiotyki. Naukowcy z Uniwersytetu w Aarhus mają nadzieję, że dzięki temu uda się opracować pestycydy, które pomogą zwalczać oporne choroby roślin.
Autorzy artykułu z pisma Oikos podkreślają, że mrówki utrzymują w koloniach bliskie kontakty, dlatego grozi im rozprzestrzenianie infekcji. Owady mogą się jednak przed nimi chronić. Po pierwsze, dbają o higienę. Po drugie, leczą siebie i inne mrówki za pomocą wytwarzanych antybiotyków. Antybiotyki pochodzą z dwóch źródeł: z gruczołów na ciele i z kolonii bakteryjnych hodowanych m.in. na odnóżach.
Wcześniejsze 2-letnie badania duńskich naukowców pokazały (ich wyniki ukazały się w sierpniowym wydaniu pisma Sociobiology), że wprowadzenie mrówek ćmawych (Formica polyctena) do sadu zmniejszało występowanie parcha jabłoni oraz brunatnej zgnilizny drzew ziarnkowych i pestkowych. Skłoniło to akademików do przejrzenia dostępnej literatury. W ten sposób znaleźli oni naukowe dowody, że mrówki mogą hamować co najmniej 14 chorób roślinnych.
Na razie nie wiemy jeszcze, jak mrówki mogą leczyć rośliny. Wiemy jednak, że znakują one drogę prowadzącą po roślinach feromonami, a część z nich ma właściwości antybiotyczne. Efekt leczniczy może więc być wynikiem działania feromonów - opowiada Joachim Offenberg.
Mamy nadzieję, że kolejne badania terenowe ujawnią nowe rodzaje czynników biologicznych do zwalczania opornych chorób roślin [...].
Duńczycy są przekonani, że to jak najbardziej realne rozwiązanie, gdyż np. 2 lata temu zespół z Uniwersytetu Wschodniej Anglii odkrył na afrykańskich mrówkach Tetraponera penzigi bakterie, którym nadano nazwę Streptomyces formicae. Wytwarzają one antybiotyki - formikamycyny. Testy laboratoryjne pokazały, że są one skuteczne zarówno wobec MRSA (metycylinoopornego gronkowca złocistego), jak i opornych na wankomycynę enterokoków (ang. Vancomycin-Resistant Enterococci, VRE). Niewykluczone więc, że mrówcze antybiotyki przydadzą się zarówno w ludzkiej medycynie, jak i w rolnictwie.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Choć są znacznie więksi, żołnierze mrówek z rodzaju Eciton nie mają wcale większych mózgów niż inne robotnice z tej samej kolonii, które wykonują znacznie bardziej złożone zadania.
Naukowcy z międzynarodowego zespołu uważają, że skoro zadania realizowane przez żołnierzy są bardzo specyficzne i mało wymagające poznawczo, inwestowanie w rozwój tkanki mózgowej również uległ ograniczeniu.
By porównać kasty - żołnierzy i pozostałe robotnice, wykorzystaliśmy wyróżniających się żołnierzy z kolonii mrówek Eciton. Żołnierze wyglądają inaczej - są więksi od pozostałych członków kolonii - ale i zachowują się inaczej: mają prostszy repertuar behawioralny. Nasze wyniki stanowią poparcie dla teorii, że prostsze zachowania żołnierzy pozwalają ograniczyć nakłady na rozwój mózgu - opowiada prof. Sean O'Donnell z Drexel University.
Autorzy artykułu z pisma BMC Zoology podkreślają, że mrówki są owadami eusocjalnymi, co oznacza, że różnice w zdolnościach indywidualnych są podporządkowane korzyściom kolonii. Naukowcy dywagowali, że dobór na poziomie kolonii może prowadzić do różnych wielkości mózgu u poszczególnych kast robotnic. Wszystko miałoby zależeć od wymogów poznawczych stwarzanych przez funkcje pełnione w kolonii.
By sprawdzić, czy tak rzeczywiście jest, zespół porównywał wielkość mózgu i ciała 109 robotnic i 39 żołnierzy 8 gatunków i podgatunków Eciton (E. burchellii foreli, E. burchellii cupiens, E. burchellii parvispinum, E. dulcium, E. hamatum, E. lucanoides, E. mexicanum i E. vagans).
Biolodzy analizowali płaty czułkowe, które odbierają dane czuciowe, i ciała grzybkowate, które odpowiadają za pamięć i uczenie. Sprawdzali także, czy architektura mózgu żołnierzy i robotnic jest inna. Okazało się, że choć żołnierze są więksi od robotnic, ogólna objętość ich mózgu nie jest już znacząco różna. Ponadto płaty czułkowe i ciała grzybkowate okazały się relatywnie mniejsze.
Ekipa O'Donnella uważa więc, że wyniki sugerują, że skoro rozwój i utrzymanie tkanki mózgowej są kosztowne zarówno dla pojedynczego organizmu, jak i kolonii, dobór naturalny na poziomie kolonii faworyzuje ograniczone inwestycje w tkankę mózgu żołnierzy, których zadania są poznawczo mniej wymagające od zadań innych robotnic.
Jako że mięśnie związane z żuchwami wykorzystywanymi do walki okazały się u żołnierzy pokaźniejsze, biolodzy doszli do wniosku, że w grę może wchodzić kompromis i rozwój mięśni zachodzi w takich uzasadnionych przypadkach kosztem rozwoju mózgu.
Wcześniejsze studia tego rodzaju porównywały różne gatunki albo polegały na określaniu czynników, które mogłyby sprzyjać zwiększonemu inwestowaniu w mózg na poziomie jednostki. My ocenialiśmy, jak ograniczenie zdolności behawioralnych, i związany z tym spadek inwestycji w mózg, u poszczególnych osobników przynosi korzyści grupie jako całości.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.