Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Język bąbelków
dodany przez
KopalniaWiedzy.pl, w Nauki przyrodnicze
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
U muszki owocowej naukowcy odkryli zupełnie nowy, nieznany u innych zwierząt, receptor smaku. Pozwala on muszce wykrywać substancje alkaliczne (zasadowe), o wysokim pH, i tym samym unikać toksycznych substancji i pożywienia.
Autorzy odkrycia, naukowcy z Monell Chemical Senses Center, zauważyli, że gdy owocówka ma do wyboru pożywienie o neutralnym pH lub o zasadowym, wybiera neutralne. Jednak gdy zostanie pozbawiona odpowiednich receptorów, traci zdolność do odróżniania pożywienia zasadowego od neutralnego. U ludzi spożycie pokarmu o zbyt wysokim pH może doprowadzić m.in. do skurczów mięśni, nudności i drętwienia. U owocówek spożywanie takich pokarmów prowadzi do skrócenia życia. Uczeni pracujący pod kierunkiem doktora Yali Zhanga wykazali, że wspomniane receptory są głównym elementem, dzięki któremu muszki trzymają się z dala od szkodliwego alkalicznego otoczenia.
Emily Liman z University of Southern California przyznaje, że odkrycie nieznanych receptorów u tak dobrze przebadanego zwierzęcia jak owocówka to spore zaskoczenie. Inni naukowcy zwracają uwagę, że odkrycie to może pomóc w badaniu smaku alkalicznego u innych organizmów.
Większość organizmów jest w stanie prawidłowo funkcjonować w wąskim zakresie wartości pH, a to oznacza, że wyczuwanie zbyt wysokiej kwasowości lub zasadowości pokarmów powinno być niezwykle istotnym elementem ich przetrwania. Jednak współczesna nauka niezbyt dobrze rozumie kwestie wyczuwania tego typu smaków. Co prawda pojawiały się już wcześniej badania na ludziach i kotach sugerujące, że wyczuwanie zasadowości pokarmów może być rodzajem smaku, ale nie udało się tego udowodnić.
Nowe badania zapewne nie będą miały bezpośredniego przełożenia na ludzi, gdyż nie mamy genu, który pozwalałby nam wyczuć „smak zasadowy”. Może jednak wiele powiedzieć o owadach i ich wyborach dotyczących np. miejsca składania jaj. Niewykluczone też, że pomoże w walce ze szkodnikami.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Sprawdzają się przewidywania naukowców, który prognozują, że już w roku 2016 średnia roczna koncentracja CO2 przekroczy 400 części na milion (ppm). W ubiegłym roku, w nocy z 7 na 8 maja, po raz pierwszy zanotowano, że średnia godzinowa koncentracja dwutlenku węgla przekroczyła 400 ppm. Tak dużo CO2 nie było w atmosferze od 800 000 – 15 000 000 lat.
W bieżącym roku możemy zapomnieć już o średniej godzinowej i znacznie wydłużyć skalę czasową. Czerwiec był trzecim z kolei miesiącem, w którym średnia miesięczna koncentracja była wyższa niż 400 części na milion.
Granica 400 ppm została wyznaczona symbolicznie. Ma nam jednak uświadomić, jak wiele węgla wprowadziliśmy do atmosfery. Z badań rdzeni lodowych wynika, że w epoce preindustrialnej średnia koncentracja dwutlenku węgla w atmosferze wynosiła 280 części na milion. W roku 1958, gdy Charles Keeling rozpoczynał pomiary na Mauna Loa w powietrzu znajdowało się 316 ppm. Wraz ze wzrostem stężenia CO2 rośnie też średnia temperatura globu. Naukowcy nie są zgodni co do tego, jak bardzo możemy ogrzać planetę bez narażania siebie i środowiska naturalnego na zbytnie niebezpieczeństwo. Zgadzają się zaś co do tego, że już teraz należy podjąć radykalne kroki w celu redukcji emisji gazów cieplarnianych. Paliwa niezawierające węgla muszą szybko stać się naszym podstawowym źródłem energii - mówi Pieter Tans z Narodowej Administracji Oceanicznej i Atmosferycznej.
Kwiecień 2014 roku był pierwszym, w którym przekroczono średnią 400 ppm dla całego miesiąca. Od maja, w związku z rozpoczęciem się najintensywniejszego okresu fotosyntezy na półkuli północnej, rozpoczął się powolny spadek koncentracji CO2, która w szczytowym momencie osiągnęła 402 ppm. Jednak przez cały maj i czerwiec średnia dzienna, a zatem i średnia miesięczna, nie spadły poniżej 400 części CO2 na milion. Eksperci uważają, że w trzecim tygodniu lipca koncentracja dwutlenku węgla spadnie poniżej 400 ppm. Do ponownego wzrostu dojdzie zimą i wzrost ten utrzyma się do maja.
Rośliny nie są jednak w stanie pochłonąć całego antropogenicznego dwutlenku węgla i wraz z każdym sezonem pozostawiają go w atmosferze coraz więcej. Dlatego też Pieter Tans przypuszcza, że w przyszłym roku pierwszym miesiącem, dla którego średnia koncentracja tego gazu przekroczy 400 ppm będzie już luty, a tak wysoki poziom CO2 utrzyma się do końca lipca, czyli przez sześć pełnych miesięcy. Od roku 2016 poziom 400 ppm będzie stale przekroczony.
Dopóki ludzie będą emitowali CO2 ze spalanego paliwa, dopóty poziom tego gazu w oceanach i atmosferze będzie się zwiększał - mówi Tans.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Jedną z najtrudniejszych umiejętności językowych jest rozumienie składni zdań złożonych. W 2019 roku naukowcy zauważyli, że istnieje korelacja pomiędzy wysokimi umiejętnościami używania narzędzi, a zdolnością do rozumienia złożonej składni. Szwedzko-francuski zespół naukowy informuje, że obie te umiejętności – sprawnego posługiwania się narzędziami oraz złożoną składnią – korzystają z tych samych zasobów neurologicznych w tym samym regionie mózgu. To jednak nie wszystko. Okazało się, że rozwijanie jednej z tych umiejętności wpływa na drugą.
Uczeni z francuskiego Narodowego Instytutu Zdrowia i Badań Medycznych (Inserm), Narodowego Centrum Badań Naukowych (CNRS), Université Claude Bernard Lyon 1, Université Lumière Lyon 2 i Karolinska Institutet zauważyli, że trening w posługiwaniu się narzędziami poprawia zdolność rozumienia złożonych zdań. I na odwrót. Jeśli ćwiczymy rozumienie złożonych zdań, poprawiają się nasze umiejętności posługiwania się narzędziami. Odkrycie to można będzie wykorzystać podczas rehabilitacji osób, które częściowo utraciły zdolności językowe.
Przez długi czas uważano, że używanie języka to niezwykle złożona umiejętność, która wymaga wyspecjalizowanych obszarów mózgu. Jednak w ostatnich latach pogląd ten ulega zmianie. Kolejne badania wskazują, że ośrodki kontroli niektórych funkcji językowych, na przykład odpowiadające za rozumienie słów, są też zaangażowane w kontrolowanie funkcji motorycznych. Jednak badania obrazowe nie dostarczały dowodów na istnienie związku pomiędzy używaniem języka i narzędzi. Z drugiej jednak strony badania paloneurobiologiczne wykazały, że obszary mózgu odpowiedzialne za posługiwanie się językiem rozwijały się u naszych przodków w okresach większego rozwoju technologicznego, gdy wśród naszych praszczurów rozpowszechniało się użycie narzędzi.
Naukowcy, analizujący dostępne dane, zaczęli się zastanawiać czy jest możliwe, by używanie narzędzi, operowanie którymi wymaga wykonywania złożonych ruchów, było kontrolowane przez te same obszary mózgu co używanie funkcji językowych.
W 2019 roku Claudio Brozzoli z Inserm i Alice C. Roy z CNRS wykazali, że osoby, które szczególnie dobrze posługują się narzędziami, zwykle też lepiej posługują się złożoną składnią zdań w języku szwedzkim. Naukowcy postanowili bliżej przyjrzeć się temu zjawisku i zaplanowali serię eksperymentów, w czasie których wykorzystano m.in. rezonans magnetyczny. Badanych proszono o wykonanie testów związanych z użyciem 30-centymetrowych szczypiec oraz zdań złożonych w języku francuskim. Dzięki temu uczeni zidentyfikowali obszary mózgu odpowiedzialne za wykonywanie każdego z tych zadań oraz wspólnych dla obu zadań.
Jako pierwsi stwierdzili, że używanie narzędzi i złożonej składni aktywuje ten sam obszar w jądrze podstawnym w mózgu. Wówczas zaczęli zastanawiać się, czy ćwicząc jedną z tych umiejętności, można by wpływać na drugą.
Uczestników badań poproszono więc o wypełnienie testów rozumienia złożonych zdań. Testy takie wypełniali 30 minut przed i 30 minut po ćwiczeniu ze szczypcami. Ćwiczenie to polegało na użyciu dużych szczypiec do umieszczenia niewielkich kołków w otworach odpowiadających im kształtem, ale o różnej orientacji. Przed i po takim ćwiczeniu porównywano, jak uczestnicy badań radzą sobie z rozumieniem prostszego i bardziej złożonego zdania. Okazało się, że po ćwiczeniu ze szczypcami badani lepiej radzili sobie ze zrozumieniem trudniejszych zdań. Z kolei w grupie kontrolnej, która używała dłoni do wkładania kołków w otworach, nie zauważono tego typu poprawy rozumienia zdań.
Teraz naukowcy opracowują protokoły rehabilitacji osób, które utraciły część umiejętności językowych, ale zachowały zdolności motoryczne. Jednocześnie zauważają, że ich badania lepiej pomagają nam zrozumieć ewolucję H. sapiens. Gdy nasi przodkowie zaczęli wytwarzać i używać narzędzi, znacznie zmieniło ich to mózg i wpłynęło na zdolności poznawcze, co mogło doprowadzić do pojawienia się innych funkcji, jak zdolności językowe, stwierdzają naukowcy.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Już wkrótce elektrownia węglowa Dry Fork znajdująca się w pobliżu miasteczka Gillette w stanie Wyoming będzie wykorzystywała dwutlenek węgla do produkcji materiałów budowlanych. W marcu w elektrowni rozpoczyna się program pilotażowy, w ramach którego CO2 będzie zmieniane w betonowe bloczki.
Eksperyment prowadzony będzie przez naukowców z Uniwersytetu Kalifornijskiego w Los Angeles (UCLA). Przez try miesiące każdego dnia będą oni odzyskiwali 0,5 tony dwutlenku węgla i wytwarzali 10 ton betonu. To pierwszy system tego typu. Chcemy pokazać, że można go skalować, mówi profesor Gaurav Sant, który przewodzi zespołowi badawczemu.
Carbon Upcycling UCLA to jeden z 10 zespołów biorących udział a ostatnim etapie zawodów NRG COSIA Carbon XPrize. To ogólnoświatowe zawody, których uczestnicy mają za zadanie opracować przełomową technologię pozwalającą na zamianę emitowanego do atmosfery węgla na użyteczny materiał.
W Wyoming są jeszcze cztery inne zespoły, w tym kanadyjski i szkocki. Pozostałych pięć drużyn pracuje w elektrowni gazowej w Kanadzie. Wszyscy rywalizują o główną nagrodę w wysokości 7,5 miliona dolarów. Zawody zostaną rozstrzygnięte we wrześniu.
Prace UCLA nad nową technologią rozpoczęto przed około 6laty, gdy naukowcy przyjrzeli się składowi chemicznemu... Wału Hadriana. Ten wybudowany w II wieku naszej ery wał miał bronić Brytanii przed najazdami Piktów.
Rzymianie budowali mur mieszając tlenek wapnia z wodą, a następnie pozwalając mieszaninie na absorbowanie CO2 z atmosfery. W ten sposób powstawał wapień. Proces taki trwa jednak wiele lat. Zbyt długo, jak na współczesne standardy. Chcieliśmy wiedzieć, czy reakcje te uda się przyspieszyć, mówi Guarav Sant.
Rozwiązaniem problemu okazał się portlandyt, czyli wodorotlenek wapnia. Łączy się go z kruszywem budowlanym i innymi materiałami, uzyskując wstępny materiał budowlany. Następnie całość trafia do reaktora, gdzie wchodzi w kontakt z gazami z komina elektrowni. W ten sposób szybko powstaje cement. Sant porównuje cały proces do pieczenia ciastek. Mamy oto bowiem mokre „ciasto”, które pod wpływem temperatury i CO2 z gazów kominowych zamienia się w użyteczny produkt.
Technologia UCLA jest unikatowa na skalę światową, gdyż nie wymaga kosztownego etapu przechwytywania i oczyszczania CO2. To jedyna technologia, która bezpośrednio wykorzystuje gazy z komina.
Po testach w Wyoming cała instalacja zostanie rozmontowana i przewieziona do National Carbon Capture Center w Alabamie. To instalacja badawcza Departamentu Energii. Tam zostanie poddana kolejnym trzymiesięcznym testom.
Na całym świecie wiele firm i grup naukowych próbuje przechwytywać CO2 i albo go składować, albo zamieniać w użyteczne produkty. Jak wynika z analizy przeprowadzonej przez organizację Carbon180, potencjalna wartość światowego rynku odpadowego dwutlenku węgla wynosi 5,9 biliona dolarów rocznie, w tym 1,3 biliona to produkty takie jak cementy, asfalty i kruszywa budowlane. Zapotrzebowanie na takie materiały ciągle rośnie, a jednocześnie coraz silniejszy akcent jest kładziony na redukcję ilości węgla trafiającego do atmosfery. To zaś tworzy okazję dla przedsiębiorstw, które mogą zacząć zarabiać na przechwyconym dwutlenku węgla.
Cement ma szczególnie duży ślad węglowy, gdyż jego produkcja wymaga dużych ilości energii. Każdego roku na świecie produkuje się 4 miliardy ton cementu, a przemysł ten generuje około 8% światowej emisji CO2. Przemysł cementowy jest tym, który szczególnie trudno zdekarbonizować, brak więc obecnie efektywnych rozwiązań pozwalających na zmniejszenie emisji węgla. Technologie wykorzystujące przechwycony CO2 mogą więc wypełnić tę lukę.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Włosi to jedni z najszybszych mówców na Ziemi. Wymawiają oni nawet do 9 sylab w ciągu sekundy. Na drugim biegunie znajduje się wielu Niemców, którzy w ciągu sekundy wymawiają 5-6 sylab. Jednak, jak wynika z najnowszych badań, średnio w ciągu minuty i Niemcy i Włosi przekazują tę samą ilość informacji. Okazuje się, że niezależnie od tego, jak szybka jest wymowa danego języka, średnie tempo przekazywania informacji wynosi 39 bitów na sekundę. To około 2-krotnie szybciej niż komunikacja za pomocą alfabetu Morse'a.
Językoznawcy od dawna podejrzewali, że te języki, które są bardziej upakowane informacją, które w mniejszych jednostkach przekazują więcej danych na temat czasu czy płci, są wymawiane wolniej, a takie, które przekazują mniej tego typu danych, są wymawiane szybciej. Dotychczas jednak nikomu nie udało się tego zbadać.
Badania nad tym zagadnieniem rozpoczęto od analizy tekstów pisanych w 17 językach, w tym w angielskim, włoskim, japońskim i wietnamskim. Uczeni wyliczyli gęstość informacji w każdej sylabie dla danego języka. Okazało się, że na przykład w języku japońskim, w którym występują zaledwie 643 sylaby, gęstość informacji wynosi nieco około 5 bitów na sylabę. W angielskim z jego 6949 sylabami jest to nieco ponad 7 bitów na sylabę.
W ramach kolejnego etapu badań naukowcy znaleźli po 10 użytkowników (5 mężczyzn i 5 kobiet) 14 z badanych języków. Każdy z użytkowników na głos czytał 15 identycznych tekstów przetłumaczonych na jego język. Naukowcy mierzyli czas, w jakim tekst zostały odczytane i liczyli tempo przekazywania informacji.
Uczeni wiedzieli, że jedne języki są szybciej wymawiane od innych. Gdy jednak przeliczyli ilość przekazywanych informacji w jednostce czasu zaskoczyło ich, że dla każdego języka uzyskali podobny wynik. Niezależnie od tego, czy język był mówiony szybko czy powoli, tempo przekazywania informacji wynosiło około 39,15 bitów na sekundę.
Czasem interesujące fakty ukrywają się na widoku, mówi współautor badań, Francois Pellegrino z Uniwersytetu w Lyonie. Lingwistyka od dawna zajmowała się badaniem takich cech języków jak np. złożoność gramatyczna i nie przywiązywano zbytnio wagi do tempa przekazywania informacji.
Rodzi się pytanie, dlaczego wszystkie języki przekazują informacje w podobnym tempie. Pellegrino i jego zespół podejrzewają, że odpowiedź tkwi w naszych mózgach i ich zdolności do przetworzenia informacji. Hipoteza taka znajduje swoje oparcie w badaniach sprzed kilku lat, których autorzy stwierdzili, że w amerykańskim angielskim górną granicą przetwarzania informacji dźwiękowych jest 9 sylab na sekundę.
Bart de Boer, lingwista ewolucyjny z Brukseli, zgadza się, że ograniczenie tkwi w mózgu, ale nie tempie przetwarzania informacji, ale w tempie, w jakim jesteśmy w stanie zebrać własne myśli. Zauważa on bowiem, że przeciętna osoba może wysłuchiwać mowy odtwarzanej z 20-procentowym przyspieszeniem i nie ma problemu z jej zrozumieniem. Wąskim gardłem jest tutaj złożenie przekazywanych danych w całość, mówi uczony.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.