Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Wydawać by się mogło, że podzielony mózg z wyspecjalizowanymi płatami i lateralizacją funkcji, czyli prawą i lewą półkulą, które "realizują się" w różnych zadaniach, to czysty ideał. Okazuje się jednak, że jak wszystko, także i to musi mieć jakieś minusy. U ryb skutkuje np. podejmowaniem złych decyzji (Proceedings of the Royal Society B).

Do pewnego momentu naukowcy sądzili, że stronność funkcji występuje wyłącznie u ludzi. Potem eksperymenty z naczelnymi, ptakami i rybami ujawniły, że jest to najprawdopodobniej cecha wspólna wszystkich kręgowców, a zlateralizowany mózg działa po prostu wydajniej. U ptaków i ryb można zaobserwować całą gamę różnych stopni stronności, niektórzy przedstawiciele tych grup zwierząt mają niemal całkowicie symetryczne mózgi. To musiało zrodzić pytanie, czy lateralizacja ma jakieś minusy.

Marco Dadda, psychobiolog z Uniwersytetu w Padwie, i jego zespół zajmowali się żyrardynkami żółtymi (Girardinus falcatus). Gatunek ten ma zlateralizowany mózg. Przez 4 lata Włosi krzyżowali ze sobą trzy grupy żyrardynek, aby uzyskać różne warianty półkuli dominującej. Wskazywali ją, obserwując, w którą stronę ryba skręcała, unikając drapieżnika. Osiemdziesiąt procent skrętów w prawo oznaczało, że dominujące jest prawe oko, a zatem lewa półkula. Brak preferencji to wskaźnik niezlateralizowanego mózgu.

Ryby wykonywały różne zadania. Musiały np. wybierać między dwiema ławicami. Jedną widzialną tylko dla lewego, a drugą tylko dla prawego oka. Jako że żyrardynki preferują stada z wieloma znajomymi rybami bądź z osobnikami o rozmiarach podobnych do własnych, by nie wyróżniać się z tłumu dla drapieżników, biolodzy przetestowali wpływ tego typu parametrów w dwóch odrębnych próbach. Sześćdziesiąt procent niezlateralizowanych ryb za każdym razem wybierało ławicę o optymalnych cechach, ta sama sztuka udawała się tylko 34% Girardinus falcatus z dominacją którejkolwiek z półkul. Dadda sądzi, że dla ryb z symetrycznym mózgiem informacje z poszczególnych połówek pola widzenia są jednakowo ważne, co pozwala podjąć sensowniejszą w danych okolicznościach decyzję. U ludzi problem częściowo zanika, ponieważ połówki pola widzenia w dużej mierze się nakładają.

Share this post


Link to post
Share on other sites

Ciekawe ;)  Dla weryfikacji tezy powinni też sprawdzić, ile zlateralizowanych i symetrycznych ryb jest w naturalnych ławicach. Te, które mają większe szanse przetrwania powinny stanowić większość :P Może okazałoby, że lateralizacja poza tym jednym minusem mimo wszystko zwiększa przeżywalność ryb?

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Wyjście zwierząt z wody na ląd to jedno z najważniejszych wydarzeń w ewolucji. Kluczem do zrozumienia, jak do tego doszło, jest odkrycie, kiedy i jak wyewoluowały płuca i kończyny. Wykazaliśmy, że biologiczne podstawy do ich ewolucji istniały na długo przed tym, zanim pierwsze zwierzę wyszło na brzeg, mówi profesor Guojie Zhang z Uniwersytetu w Kopenhadze.
      Nie od dzisiaj wiemy, że człowiek oraz inne kręgowce wyewoluowały z ryb. Przed około 370 milionami lat na ląd zaczęły wychodzić pierwsze prymitywne czworonogi, ryby, które zmieniły płetwy na kończyny i były w stanie oddychać powietrzem atmosferycznym. Okazuje się jednak, że zmiana płetw na kończyny i umiejętność oddychania poza wodą są znacznie starsze.
      Naukowcy z Uniwersytetu w Kopenhadze przeprowadzili badania genetyczne, które dowiodły, że już 50 milionów przed wyjściem czworonogów na ląd istniał kod genetyczny umożliwiający zmianę płetw na łapy i pozwalający na oddychanie powietrzem atmosferycznym. Co więcej, geny te wciąż istnieją u ludzi i wielopłetwcowatych. Badania, opublikowane na łamach pisma Cell, zmieniają tradycyjne spojrzenie na ciąg wydarzeń, które doprowadziły do pojawienia się pierwszych zwierząt lądowych.
      Uczeni od pewnego czasu podejrzewają, że płetwy piersiowe wielopłetwcowatych, ryb potrafiących poruszać się po lądzie podobnie jak czworonogi, odpowiadają płetwom, jakie posiadał nasz wspólny przodek z rybami. Teraz, dzięki mapowaniu genomu wykonanemu przez uczonych z Kopenhagi, dowiadujemy się, że staw łączący metapterygium z radialiami płetw jest homologiem – czyli ma wspólne pochodzenie ewolucyjne – stawu łokciowego u człowieka. Sekwencja DNA kontrolująca rozwój stawu łokciowego H. sapiens istniała już u wspólnego przodka prymitywnych ryb i kręgowców lądowych i wciąż u nich istnieje. Jednak w pewnym momencie ewolucji sekwencję tę utraciły ryby z podgromady doskonałokształtnych.
      Wielopłetwcowate i niektóre inne prymitywne ryby posiadają parę płuc przypominających ludzkie płuca. Właśnie przeprowadzone badania wykazały, że ich płuca funkcjonują podobnie jak płuca niszczuki krokodylej i dochodzi u nich do ekspresji tych samych genów co w ludzkich płucach.
      Jednocześnie wykazano, że w tkance płuc i pęcherza pławnego mamy do czynienia z bardzo podobną ekspresją genów, co wskazuje, że są organami homologicznymi. Tak zresztą uważał już Darwin. Jednak o ile Darwin sądził, że pęcherz pławny przekształcił się w płuca, to obecne badania sugerują, że wyewoluował on z płuc. Ich autorzy sądzą, że nasi wcześni rybi przodkowie posiadali prymitywne płuca. W toku ewolucji część ryb zachowała te płuca, co pozwoliło im z czasem wyjść na ląd i przyczyniło się do pojawienia się czworonogów, a u części ryb z płuc powstał pęcherz pławny, prowadząc do powstania doskonałokształtnych.
      Badania te pokazują, skąd wzięły się różne organy naszego ciała i ich funkcję są zapisane w kodzie genetycznym. Niektóre z funkcji związanych z płucami i kończynami nie pojawiły się w czasie, gdy pierwsze zwierzęta wyszły na ląd, ale były zakodowane w genomie na długo zanim pierwsza ryba zaczęła prowadzić lądowy tryb życia. Co ciekawe, te sekwencje genetyczne są wciąż obecne w rybich „żywych skamielinach”, dzięki czemu możemy je badać, mówi Guojie Zhang.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Francuscy lekarze ze zdumieniem dowiedzieli się, że 44-letni normalnie funkcjonujący mężczyzna niemal nie ma... mózgu. Obrazowanie medyczne wykazało, że czaszkę prawie całkowicie wypełniał płyn mózgowo-rdzeniowy.
      W czaszce zdrowego człowieka znajdują się cztery niewielkie komory, wypełnione płynem. U Francuza były one tak powiększone, że prawie nie było miejsca na mózg. Została mu tylko cienka warstwa komórek mózgowych.
      Ma żonę, czworo dzieci i pracuje jako urzędnik państwowy – napisali lekarze w piśmie do specjalistycznego pisma medycznego „Lancet”.
      Mężczyzna trafił do szpitala, gdyż skarżył się na bóle nogi. Lekarze, którzy czytali jego kartę choroby, dowiedzieli się, że jako dziecko miał on założony dren, który odprowadzał z czaszki nadmiar płynu i dren ten został usunięty gdy mężczyzna miał 14 lat.
      Lekarze najpierw przeprowadzili tomografię komputerową, a następnie rezonans magnetyczny. Byli zdumieni tym, co zobaczyli. Najbardziej zdumiewa mnie to, jak tak niewielki mózg poradził sobie z czynnościami życiowymi. On nie powinien żyć – mówi doktor Max Muenke, specjalista ds. uszkodzeń mózgu w Narodowym Instytucie Badań Ludzkiego Genomu.
      U mężczyzny przeprowadzono testy na inteligencję, które wykazały IQ na poziomie 75 punktów. To mniej niż średnie 100 punktów, jednak nie można mężczyzny uznać za upośledzonego.
      Jeśli jakiś proces zachodzi bardzo powoli, prawdopodobnie przez dziesięciolecia, różne części mózgu moją przejąć rolę tych obszarów, które zostały zredukowane – mowi Muenke.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Ssaki o dużych mózgach zwykle występują z mniejszej liczbie w danej lokalizacji niż ssaki o mniejszych mózgach, wynika z najnowszych badań. Naukowcy z University of Reading stali na czele międzynarodowej grupy, której celem było zbadanie, dlaczego lokalne populacje takich ssaków jak myszy, małpy, kangury i lisy tak bardzo różnią się liczebnością na lokalny obszarach, nawet jeśli mamy do czynienia z podobnymi gatunkami.
      Uczeni wykorzystali metody statystyczne do przebadania różnych scenariuszy dla setek gatunków i stwierdzili, że ogólny trend dla ssaków jest taki, że im gatunek ma większy mózg, w tym mniejszym zagęszczeniu występuje. Gdy np. rozważamy dwa gatunku i podobnej diecie i masie ciała, okazuje się, że to wielkość mózgu jest wskazówką co do zagęszczenia zwierząt na danym obszarze.
      Większe mózgi kojarzą się z większą inteligencją. W tym przypadku to większe mózgi powstrzymują zwierzęta przed życiem w zbyt dużym zagęszczeniu. Może mieć to związek z faktem, że większy mózg wymaga więcej żywności i innych zasobów, a zatem potrzebuje więcej przestrzeni, by zaspokoić te potrzeby, mówi doktor Manuela Gonzalez-Suarez, która stała na czele grupy badawczej.
      Zrozumienie, dlaczego na różnych obszarach występuje różne zagęszczenie zwierząt jest istotne z punktu widzenia ich ochrony. Mniejsze zagęszczenie powoduje, że gatunek bardziej jest narażony na wymarcie, z drugiej strony większe lokalne zagęszczenie zwiększa ekspozycję gatunku na takie zagrożenia, jak istnienie dróg, dodaje.
      Bardzo interesująco wypada porównanie zagęszczenia, masy ciała i masy mózgu. Otóż przeciętna mysz waży 0,016 kilograma, jej mózg ma wagę 0,0045 kg, a gatunek żyje w niezwykle dużym zagęszczeniu wynoszącym 600 osobników na km2. W dużym zagęszczeniu 86 osobników na km2 żyją też wiewiórki. To zwierzęta warzące 0,325 kg, których masa mózgu wynosi 0,006 kg.
      Powszechnie występującym zwierzęciem jest też lis rudy (2,6 osobnika na km2), ssak ważący 4,3 kg o masie mózgu 0,047 kg. Z kolei makak berberyjski (11 kg masy ciała, 0,095 kg masy mózgu) występuje w liczbie 36 osobników na km2. Natomiast tygrys, który waży 185 kg i ma mózg o masie 0,276 kg występuje w liczbie 0,14 osobnika na km2. Podobnie zresztą 4-tonowy słoń z mózgiem o masie 4,5 kg, którego liczebność na obszarach występowania to 0,58 osobnika na km2.
      Ze schematu tego wyraźnie wyłamuje się człowiek. Lokalne zagęszczenie naszego gatunku bardzo się różni, dochodząc do 26 000 osobników na km2 w Monako.
      Wielkość mózgu nie jest jedynym czynnikiem decydującym o zagęszczeniu ssaków. Różne środowiska mają różne stabilność oraz różne gatunki konkurujące, więc to również ma wpływ. Konieczne są dalsze badania nad wpływem rozmiarów mózgów w różnych środowiskach, stwierdzają autorzy badań.
      Naukowcy zauważają też, że istnieją wyraźne wyjątki od reguły. Na przykład ludzie wykorzystali inteligencję do pokonania problemu ograniczonej ilości zasobów na danym terenie. Możemy importować żywność z całego świata co teoretycznie pozwala nam żyć w wielkiej liczbie w dowolnym miejscu na Ziemi. Niektóre inteligentne gatunki również mogły częściowo poradzić sobie z tymi ograniczeniami, stwierdzają badacze.
      Na potrzeby badań naukowcy wzięli pod lupę 656 nielatających ssaków lądowych. Związek wielkości mózgu z zagęszczeniem populacji jest szczególnie widoczny wśród ssaków mięsożernych oraz naczelnych, a mniej widoczny wśród gryzoni i torbaczy.
      Przykładem takich oczywistych zależności może być porównanie makaków berberyjskich z siamangiem wielkim. Oba gatunki małp mają podobną dietę i podobną masę ciała. Jednak mózg makaka waży 95 gramów, a zwierzę występuje w zagęszczeniu 36 osobników na km2. Z kolei mózg siamanga waży 123 gramy, a zagęszczenie populacji wynosi 14 osobników na km2.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Podczas gdy dorośli przetwarzają różne zadania w wyspecjalizowanych obszarach mózgu w jednej z półkul, niemowlęta i dzieci używają do tego celu obu półkul. To może być przyczyną, dla której dzieci znacznie łatwiej regenerują się po urazach mózgu niż dorośli. Autorzy najnowszych badań skupili się na języku i odkryli, że dzieci podczas przetwarzania języka mówionego używają obu półkul mózgu.
      To bardzo dobra wiadomość dla dzieci, które odniosły urazy mózgu. Użycie obu półkul zapewnia mechanizm kompensujący po urazie. Na przykład, jeśli w wyniku udaru zaraz po urodzeniu dojdzie do uszkodzenia lewej półkuli mózgu, dziecko nauczy się języka korzystając z prawej półkuli. Dziecko z mózgowym porażeniem dziecięcym, które uszkodzi tylko jedną półkulę, może rozwinąć wszystkie potrzebne zdolności poznawcze w drugiej półkuli. Nasze badania pokazują, jak to jest możliwe, mówi profesor Elissa L. Newport, dyrektor Center for Brain Plasticity and Recovery, które jest wspólnym przedsięwzięciem Georgetown University i MedStar National Rehabilitation Network.
      Niemal wszyscy dorośli przetwarzają mowę tylko w lewej półkuli. Potwierdzają to zarówno badania obrazowe jak i fakt, że po udarze, który dotknął lewą półkulę, ludzie często tracą zdolność do przetwarzania mowy.
      Jednak u bardzo małych dzieci uraz jednej tylko półkuli rzadko prowadzi do utraty zdolności językowych. Nawet, jeśli dochodzi do poważnego zniszczenia lewej półkuli, dzieci nadal potrafią korzystać z języka. To zaś sugeruje – jak zauważa Newport – że dzieci przetwarzają język w obu półkulach. Jednak tradycyjne metody obrazowania nie pozwalały na obserwowanie tego zjawiska. Nie było jasne, czy dominacja lewej półkuli w zakresie zdolności językowych jest widoczna już od urodzenia, czy rozwija się z wiekiem, stwierdza uczona.
      Teraz, dzięki funkcjonalnemu rezonansowi magnetycznemu udało się wykazać, że u małych dzieci żadna z półkul nie ma w tym zakresie przewagi. Lateralizacja pojawia się z wiekiem. Ustala się ona w wieku 10-11 lat.
      W najnowszych badaniach udział wzięło 39 zdrowych dzieci w wieku 4–13 lat, których wyniki porównano z 14 dorosłymi w wieku 18–29 lat. Obie grupy zmierzyły się z zadaniem polegającym na rozumieniu zdań. W czasie rozwiązywania zadania każdy z uczestników poddany był skanowaniu za pomocą fMRI, a wyniki potraktowano indywidualnie. Później stworzono mapę aktywności mózgu dla grup wiekowych 4–6 lat, 7–9 lat, 10–13 lat i 18–29 lat.
      Badacze stwierdzili, że wyniki uśrednione dla każdej z grup pokazują, iż nawet u małych dzieci występuje preferencja (lateralizacja) lewej półkuli mózgu w czasie przetwarzania mowy. Jednak znaczny odsetek najmłodszych dzieci wykazuje silną aktywację prawej półkuli mózgu. U osób dorosłych prawa półkula aktywuje się podczas rozpoznawania ładunku emocjonalnego niesionego z głosem. Natomiast u dzieci bierze ona udział i w rozpoznawaniu mowy i w rozpoznawaniu ładunku emocjonalnego.
      Naukowcy sądzą, że jeśli udałoby im się przeprowadzić podobne badania u jeszcze młodszych dzieci, to obserwowaliby jeszcze większe zaangażowanie prawej półkuli mózgu w przetwarzanie języka.
      Obecnie Newport i jej grupa skupiają się na badaniach przetwarzania mowy w prawej półkuli mózgu u nastolatków i młodych dorosłych, u których lewa półkula mózgu została poważnie uszkodzona podczas udaru zaraz po urodzeniu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W głębinach oceanu pozbawionych światła słonecznego zespół naukowców odkrył jeden z najczarniejszych znanych materiałów: skórę pewnych ryb. Te ultraczarne ryby pochłaniają światło tak skutecznie, że nawet w jaskrawym świetle wyglądają jak kontury bez rozróżnialnych cech. W ciemnościach głębin, także otoczone bioluminescencyjnym światłem, ryby te dosłownie znikają.
      Szesnastego lipca w piśmie Current Biology ukazał się artykuł zespołu Karen Osborn z Narodowego Muzeum Historii Naturalnej (Smithsonian Institution) i Sönke Johnsena z Duke University. Naukowcy podkreślają, że ultraczarna skóra wyewoluowała u 16 gatunków głębokowodnych ryb. Dane histologiczne sugerują, że niski współczynnik odbicia jest pośredniczony przez ciągłą warstwę gęsto upakowanych melanosomów tuż pod błoną podstawną naskórka. W warstwie tej brakuje niezabarwionych przerw między melonoforami, które występują u innych ryb o ciemnym ubarwieniu.
      Jak podkreślają naukowcy, przekłada się to na wysoką absorpcję. Odbija się zaledwie 0,5% światła. Naśladowanie tej strategii pozwoliłoby inżynierom opracować tańsze, giętkie i bardziej wytrzymałe ultraczarne materiały do zastosowań w technologiach optycznych, np. teleskopach, czy do kamuflażu.
      Osborn zainteresowała się rybią skórą, po tym jak spróbowała sfotografować uderzająco czarne, złowione włókiem dennym ryby. Mimo nowoczesnego sprzętu nie mogła uwiecznić  żadnych szczegółów. Nie miało znaczenia, jak się ustawiło aparat czy oświetlenie - pochłaniane było całe światło.
      Pomiary w laboratorium pokazały, czemu aparaty sobie nie radziły. Wiele z ryb pochłaniało ponad 99,5% światła, które padało na ich powierzchnię. W głębokim, ciemnym oceanie, gdzie pojedynczy foton wystarczy, by przyciągnąć czyjąś uwagę, taka intensywna czerń zwiększa szansę ryb na przeżycie.
      Ponieważ światło słoneczne nie dociera na większe głębokości, gros istot z głębin produkuje własne światło (zjawisko to nazywamy bioluminescencją). Można w ten sposób zwrócić uwagę płci przeciwnej, rozproszyć drapieżniki czy zwabić ofiarę. Można też zdemaskować zwierzęta znajdujące się nieopodal, chyba że mają one dobry kamuflaż. Jeśli chcesz się wtopić w nieskończoną czerń otoczenia, pochłonięcie wszystkich docierających do ciebie fotonów wydaje się wspaniałą metodą - podkreśla Osborn.
      Naukowcy zauważyli, że kształt, rozmiar i układ melonosomów powodują, że praktycznie całe światło, jakiego same bezpośrednio nie absorbują, jest jest kierowane do sąsiednich melanosomów (wydłuża się ścieżka optyczna, a więc i pochłanianie promieniowania przez melaninę). Niski współczynnik odbicia to pokłosie rozpraszania światła na boki w obrębie warstwy. W gruncie rzeczy tworzą one superwydajną, supercienką pułapkę świetlną. Światło się nie odbija, nie przechodzi na drugą stronę. Wchodzi w tę warstwę i przepada.
      Jak wyliczono, spośród 18 uwzględnionych w badaniach gatunków przy fali długości 480 nm (to wartość typowa m.in. dla oceanicznej bioluminescencji) 16 prezentowało współczynniki odbicia poniżej 0,5%, a 2 pozostałe gatunki (Chauliodus macouni i Cyclothone acclinidens) poniżej 0,6%.
      Z wyjątkiem C. acclinidens, Ch. macouni i Sigmops elongatus, ultraczarna skóra pokrywała większość ciała, co sugeruje, że ma ona zmniejszać odbicie światła z bioluminescencji. Generalnie badane ryby były średnich rozmiarów, dlatego presja, by ukryć się zarówno przed drapieżnikami, jak i ofiarami, mogła być ważną siłą napędzającą ewolucję ultarczarnej skóry.
      Naukowcy podejrzewają też, że ultraciemna skóra u drapieżników polujących z zasadzki, np. Oneirodes sp., Eustomias spp. i Astronesthes micropogon, służy do zmniejszenia współczynnika odbicia własnych wabików. Niekiedy ultraczarna skóra znajdowała się tylko w okolicy przewodu pokarmowego, co miałoby służyć ukryciu światła emitowanego przez niedawno spożytą bioluminescencyjną ofiarę. U np. Ch. macouni ultraczarna skóra występowała nad i pod lustrzanym pasem, co sugeruje, że dla rejonów ciała o wysokiej krzywiźnie kamuflaż lustrzany może być mniej skuteczny, dlatego zastąpiono go ultraczernią.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...