
Ciemna energia nie istnieje?
dodany przez
KopalniaWiedzy.pl, w Ciekawostki
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Losy wszechświata zależą od równowagi pomiędzy ciemną energią, a materią. Dark Energy Spectroscopic Instrument (DESI), zamontowany na Kitt Peak w Arizonie działa od 2021 roku i zebrał dane o milionach galaktyk i kwazarów, dzięki czemu powstała największa trójwymiarowa mapa wszechświata. Gdy zaś naukowcy połączyli dane z DESI z danymi uzyskanymi z innych instrumentów, pojawiły się wskazówki, że ciemna energia – o której sądzono, że jest stałą kosmologiczną – ewoluuje w niespodziewany sposób i słabnie z czasem. A to oznacza, że standardowy model kosmologiczny może wymagać aktualizacji.
DESI to międzynarodowy eksperyment zarządzany przez Lawrence Berkeley National Laboratory (LBNL). Zaangażowanych weń jest ponad 900 naukowców z ponad 70 instytucji badawczych na całym świecie. To co widzimy, jest niezwykle intrygujące. Bardzo ekscytująca jest świadomość, że możemy być o krok od wielkiego odkrycia dotyczącego ciemnej energii i natury wszechświata, mówi profesor Alexie Leauthaud-Harnett, rzecznik prasowa DESI.
Same w sobie dane z DESI są zgodne z najpowszechniej uznawanym modelem wszechświata Lambda-CDM (ΛCDM), gdzie Λ to ciemna energia będącą tutaj stałą kosmologiczną, a CDM to zimna ciemna materia. Jeśli jednak połączy się te dane z wynikami badań mikrofalowego promieniowania tła (CMB), supernowych oraz słabego soczewkowania grawitacyjnego, coraz bardziej staje się oczywiste, że ciemna energia może słabnąć w czasie i inne modele kosmologiczne mogą lepiej opisywać rzeczywistość.
Coraz bardziej i bardziej wygląda na to, że musimy zmodyfikować nasz standardowy model kosmologiczny tak, by wszystkie dane do siebie pasowały. A przyjęcie, że ciemna energia ulega ewolucji wydaje się najbardziej obiecującą metodą modyfikacji, dodaje profesor Will Percival, drugi z rzeczników prasowych DESI.
Jak na razie poziom ufności, że rzeczywiście chodzi o ewolucję ciemnej energii nie osiągnął 5 sigma, kiedy to mówi się o odkryciu. Jednak różne kombinacje danych z DESI z pomiarami CMB, supernowych i soczewkowania dają wartości od 2,8 do 4,2 sigma. Poziom 3 sigma oznacza, że istnieje 0,3% szansy, iż uzyskane dane nie są prawdziwe. Pozornie to niewiele, jednak w fizyce już niejednokrotnie zdarzało się, że obserwacje o poziomie ufności 3 sigma po uwzględnieniu dodatkowych danych okazywały się anomalią statystyczną. Dlatego właśnie o odkryciu jest mowa przy poziomie 5 sigma.
Pozwalamy wszechświatowi opowiedzieć nam, jak działa i być może mówi nam, że jest bardziej złożony, niż sądziliśmy. To niezwykle interesujące, a coraz więcej linii dowodowych prowadzi nas w tym samym kierunku, dodaje Andrei Cuceu, który stoi na czele grupy roboczej Lyman-alpha, mapującej odległe obszary wszechświata na podstawie rozkładu międzygalaktycznego wodoru.
Jeśli rzeczywiście ciemna energia słabnie, nie wiemy, co to oznacza. Być może rozszerzanie wszechświata się zatrzyma i pod wpływem grawitacji zacznie się on kurczyć. A być może ciemna energia ulegnie dodatkowemu wzmocnieniu i wszechświat zacznie rozszerzać się jeszcze szybciej. Nowe obserwacje otwierają przed teoretykami nowe możliwości. O ile, oczywiście, są prawdziwe.
DESI prowadzi jeden z najszerzej zakrojonych przeglądów kosmosu. Supernowoczesny instrument jest w stanie jednocześnie badać światło z 5000 galaktyk. Celem projektu jest zbadanie 50 milionów galaktyk i kwazarów. Cel ten może zostać osiągnięty pod koniec 2026 lub na początku 2027 roku. W międzyczasie, jeszcze w bieżącym roku DESI opublikuje wyniki badań nad gromadzeniem się galaktyk i materii w ciągu miliardów lat. Proces ten obrazuje wzajemne oddziaływanie grawitacji i ciemnej energii. Wyniki tych badań powinny jeszcze lepiej pokazać, czy rzeczywiście ciemna energia ulega osłabieniu.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Krótko po Wielkim Wybuchu, gdy wszechświat zaczął się rozszerzać, przypominał on gotującą się wodę i dochodziło w nim do nieznanych dotychczas przejść fazowych. Wyobraźmy sobie, że bąble pojawiały się w różnych miejscach wczesnego wszechświata. Stawały się coraz większe, zderzały się ze sobą. W końcu mieliśmy do czynienia ze złożonym układem zderzających się bąbli, które uwolniły energię i wyparowały, mówi Martin S. Sloth z Centrum Kosmologii i Fenomenologii Fizyki Cząstek Uniwersytetu Południowej Danii. Wraz z Florianem Niedermannem z Nordyckiego Instytutu Fizyki Teoretycznej (NORDITA) w Sztokholmie stworzył on hipotezę, która ma rozwiązywać problemy ze stałą Hubble'a.
Stała Hubble'a to wartość, która mówi nam, z jaką prędkością wszechświat się rozszerza. Można ją obliczyć na podstawie analizy promieniowania tła albo na podstawie tempa oddalania się od nas gwiazd i galaktyk. Obie metody są prawidłowe, obie są przyjęte przez naukę. Problem w tym, że dają różne wyniki. A jest on na tyle poważny, że przed kilku laty odbyło się specjalne spotkanie, na którym omawiano to zagadnienie.
W nauce powinniśmy być w stanie dojść do tych samych wyników za pomocą różnych metod. Mamy więc problem. Dlaczego nie otrzymujemy takiego samego wyniku w tym przypadku, gdy jesteśmy pewni, że obie metody są prawidłowe?, pyta Niedermann. Jeśli uważamy obie te metody za prawidłowe, a tak jest, może to nie metody są problemem. Może powinniśmy popatrzeć na sam początek, na bazę do której te metody stosujemy. Może to w niej tkwi błąd, dodaje.
Bazą dla obu metod obliczania stałej Hubble'a jest Model Standardowy, który zakłada, że przez 380 000 lat po Wielkim Wybuchu wszechświat wypełniony był promieniowaniem i materią – zarówno normalną jak i ciemną – i to były dominujące formy energii. Promieniowanie i zwykła materia były skompresowane w ciemnej, gorącej gęstej plazmie. Dla takiego modelu otrzymujemy obecnie dwie różne wartości stałej Hubble'a.
Sloth i Niedermann wysunęli hipotezę, że we wczesnym wszechświecie dużą rolę odgrywała nieznana forma ciemnej energii. Okazało się, że gdy przyjęli takie założenie i obliczyli dla niego stałą Hubble'a, to za pomocą obu metod uzyskali ten sam wynik. Hipotezę tę nazwali NEDE (New Early Dark Energy – Nowa Wczesna Ciemna Energia).
Naukowcy postulują, że ta nowa ciemna energia przeszła zmianę fazy na krótko przed zmianą wszechświata z gęstej gorącej plazmy w stan, w jakim obecnie się znajduje. Ciemna energia wczesnego wszechświata przeszła zmianę fazy tak, jak woda może zmienić fazę pomiędzy stanem stały, ciekłym i gazowym. Podczas tej przemiany fazowej bąble energii zderzały się ze sobą, uwalniając energię, wyjaśnia Niedermann. Proces ten mógł trwać bardzo krótko, tylko tyle czasu ile trzeba dwóm cząstką by się zderzyły, a mógł trwać też 300 000 lat. Tego nie wiemy, ale próbujemy się dowiedzieć, dodaje Sloth.
Obaj naukowcy zdają sobie sprawę z faktu, że sugerują, iż podstawy naszego rozumienia wszechświata są wadliwe i że zaproponowali istnienie nieznanych dotychczas cząstek lub sił. Zauważają jednak, że w ten sposób można wyjaśnić problemy ze stałą Hubble'a. Jeśli ufamy obserwacjom i obliczeniom, to musimy zaakceptować fakt, iż nasz obecny model wszechświata nie wyjaśnia danych. Musimy więc poprawić ten model. Ale nie poprzez jego odrzucenie i odrzucenie wszystkiego, w czym dotychczas się sprawdził, ale przez dopracowanie go i uszczegółowienie, stwierdzają. A – jak mówią – dodanie do obecnego Modelu Standardowego hipotezy o zmianie fazy ciemnej energii we wczesnym wszechświecie pozwala na rozwiązanie problemów z obliczeniem tempa rozszerzania się wszechświata.
Warto w tym miejscu przypomnieć, że przed dwoma laty grupa fizyków wpadła na ślady nieznanego rodzaju ciemnej energii, która mogła istnieć w ciągu pierwszych 300 000 lat po Wielkim Wybuchu. Jeszcze inną próbą rozwiązania problemu jest przyjęcie, że wszechświat nie jest homogeniczny.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Dwie grupy naukowe twierdzą, że wpadły na ślad nieznanego rodzaju ciemnej energii, która mogła istnieć w ciągu pierwszych 300 000 lat po Wielkim Wybuchu, przed okresem rekombinacji, w którym protony i elektrony utworzyły atomy. Obecność tej ciemnej energii – o ile w ogóle spostrzeżenia się potwierdzą – może wyjaśniać, dlaczego różne metody obliczania tempa rozszerzania się wszechświata dają różne wyniki.
Tempo rozszerzania się wszechświata, stała Hubble'a, zostało wyliczone 100 lat temu. Problem w tym, że wyliczenia stałej Hubble'a w oparciu o badania mikrofalowego promieniowania tła (CMB), czyli promieniowania wyemitowanego na wczesnych etapach rozwoju wszechświata, dają inne wyniki, niż liczone w oparciu o supernowe. Innymi słowy, obliczenia oparte na najstarszych danych nie zgadzają się z tymi, opartymi na danych nowszych. Istnienie w przeszłości nieznanej formy ciemnej energii być może pozwoliłoby wyjaśnić te różnice.
Dotychczas powstały liczne hipotezy, próbujące wyjaśnić te różnice. Przed dwoma laty Marc Kamionkowski i jego koledzy z Johns Hopkins University, zaproponowali hipotezę o „wczesnej ciemnej energii”, która miała wypełniać wszechświat przez kilkaset tysięcy lat po Wielkim Wybuchu. Nie jest to do końca przekonujące, ale to jedyny model, który może działać, mówi Kamionkowski.
Ta wczesna ciemna energia nie byłaby w stanie napędzać przyspieszenia wszechświata w sposób, jaki robi to „normalna” ciemna energia, ale spowodowałaby ona, że plazma we wczesnym wszechświecie ochładzałaby się szybciej. A to z kolei wpłynęłoby na interpretację wyników pomiarów CMB, szczególnie zaś wieku wszechświata i tempa jego rozszerzania się.
Informacje, sugerujące istnienie energii postulowanej przez zespół Kamionkowskiego, zauważono w danych dotyczących polaryzacji CMB z Atacama Cosmology Telscope (ACT) z lat 2013–2016. Autorami jednego z artykułów – oba zostały opublikowane na serwerze arXiv – są uczeni pracujący przy ACT, a autorami drugiego niezależna grupa naukowa.
Sami autorzy badań, zwracają uwagę, że jest jeszcze zdecydowanie zbyt wcześnie, by ogłaszać odkrycie. Zebrane dane nie pozwalają jednoznacznie stwierdzić, że mamy do czynienia z nieznanym rodzajem ciemnej energii. Jednak, jak zauważają, kolejne obserwacje za pomocą ACT oraz South Pole Telescope mogą już wkrótce dostarczyć kolejnych danych. Jeśli to prawda, jeśli rzeczywiście we wczesnym wszechświecie istniała jakaś inna forma ciemnej energii, to powinniśmy zobaczyć silny sygnał, mówi Colin Hill, kosmolog z Columbia University, który jest współautorem badań zespołu ACT.
ACT i South Pole Telescope to urządzenia, których celem jest mapowanie CMB. Autorzy obu artykułów z arXiv twierdzą, że dane z ACT dotyczące polaryzacji mikrofalowego promieniowania tła, bardziej pasują do modelu zawierającego wczesną ciemną energię, niż do modelu standardowego. Jeśli byłyby prawdziwe, to by oznaczało, że wszechświat liczy sobie 12,4 miliarda lat, a nie 13,8 miliarda lat, jak się obecnie przyjmuje. Ponadto tempo rozszerzania się wszechświata liczone z mikrofalowego promieniowania tła byłoby o 5% większe, czyli wynosiłoby ok. 71 km/s/Mpc (kilometrów na sekundę na megaparsek), a to już mieści się w zakresach wartości liczonych z supernowych.
Uczeni bardzo ostrożnie podchodzą do swoich spostrzeżeń. W tej chwili sprawdzają, czy również w zarejestrowanych przez ACT danych dotyczących temperatury CMB zauważą preferencje odnośnie hipotezy o wczesnej ciemnej energii. Niezwykle ważne dla zweryfikowanie tych informacji będzie sprawdzenie danych z ACT za pomocą danych z South Pole Telescope.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Kosmologowie od dawna mają problem z jedną z podstawowych wartości opisujących wszechświat – tempem jego rozszerzania się. Różne pomiary przynoszą bowiem różne wartości. Teraz coraz wyraźniej widać kolejne pęknięcie w standardowym modelu kosmologicznym. Niedawno grupa naukowców wykazała, że wszechświat jest niespodziewanie rzadki. Materia nie gromadzi się w nim tak, jak się spodziewano. Podobne sygnały pojawiały się już wcześniej, tym razem jednak mamy do czynienia z najbardziej szczegółową analizą danych zbieranych przez 7 lat.
Dane są na tyle wiarygodne, że niektórzy specjaliści zastanawiają się, czy nie wpadliśmy na trop czegoś nieznanego. Mamy już ciemną materię i ciemną energię. Mam nadzieję, że do wyjaśnień nie potrzebujemy kolejnej ciemnej rzeczy, mówi Michael Hudson, kosmolog z University of Waterloo, który nie był zaangażowany w najnowsze badania.
Autorzy najnowszych badań, skupieni wokół inicjatywy Kilo-Degree Survey (KiDS), obserwowali około 31 milionów galaktyk, położonych w promieniu do 10 miliardów lat świetlnych od Ziemi. Na podstawie tych obserwacji wyliczyli średni rozkład niewidocznego gazu i ciemnej materii we wszechświecie. Odkryli, że jest jej niemal o 10% mniej niż przewiduje jeden z najpowszechniej uznawanych modeli kosmologicznych, Model Lambda-CDM.
W ciągu ostatnich ośmiu lat pojawiło się kilkanaście badań, których autorzy – korzystając z różnych technik – dochodzili do wniosku, że materia nie gromadzi się zgodnie z przewidywaniami. Rozpatrywane osobno badania te nie mają większego znaczenia. Rozważane w nich kwestie są tak trudne do zbadania, że łato mogło dojść do pomyłek. Jednak coraz częściej pojawiają się głosy, że to nie statystycznie dopuszczalne niedoskonałości w badaniach, ale reguła. Gdy w wielu różnych zestawach danych zaczynasz dostrzegać tę samą rzecz, musisz wziąć pod uwagę, że coś w tym jest, stwierdza Hudson.
Naukowcy muszą teraz pogodzić dwie sprzeczne ze sobą rzeczy. Z jednej strony, by określić tempo rozszerzania się wszechświata – w wiele wskazuje na to, że jest ono większe, niż sądzono – muszą znaleźć dodatkowy element, który go napędza. Z drugiej jednak strony skoro materia nie gromadzi się razem tak, jak przypuszczano, do siły na nią oddziałujące są słabsze, a nie mocniejsze, jak wymagałoby tego wyjaśnienie tempa rozszerzania się wszechświata. Julien Lesgourgues, kosmolog-teoretyk z Uniwersytetu Aachen mówi, że znalezienie satysfakcjonującego wyjaśnienia obu tych zjawisk będzie koszmarem.
Podejmowane są pewne próby wyjaśnień wspomnianych zjawisk. Przyspieszenie ekspansji wszechświata można by wyjaśnić „ciemnym promieniowaniem”. Jednak trzeba by je zbilansować dodatkową materią, która by się grupowała. Aby osiągnąć obserwowane mniejsze grupowanie się, trzeba by wprowadzić dodatkowy element, który to uniemożliwia. Tutaj pojawia się próba wyjaśnienia w postaci zamiany ciemnej materii – która powoduje grupowanie się materii – w ciemną energię, powodującą jej oddalanie się od siebie. Można też przyjąć, że Ziemia znajduje się w jakimś wielkim bąblu rozrzedzonej materii, co zaburza nasze obserwacje. Lub też uznać, że szybkie tempo rozszerzania się wszechświata i mniejsze grupowanie się materii nie są ze sobą powiązane. Nie widzę obecnie żadnego satysfakcjonującego wyjaśnienia. Jeśli jednak byłbym teoretykiem byłbym bardzo podekscytowany, mówi Hudson.
Wciąż też istnieje prawdopodobieństwo, że oba omawiane zjawiska lub przynajmniej jedno z nich, w rzeczywistości nie mają miejsca. Jednak by to stwierdzić, trzeba poczekać na inne dane. KiDS to jeden z trzech dużych projektów badawczych. Inne to międzynarodowy Dark Energy Survey prowadzony w Chile i japoński Hyper Suprime-Cam. W ramach każdego z nich skanowany jest inny fragment nieboskłonu na inną głębokość. W czasie ostatniej kampanii Dark Energy Survey przeskanowano obszar 5-krotnie większy niż badał KiDS. Wyniki powinny ukazać się w ciągu najbliższych miesięcy. Wszyscy na nie czekają. To kolejna wielka rzecz w kosmologii, mówi Daniel Scolnic, kosmolog z Duke University, który specjalizuje się w badaniu tempa rozszerzania się wszechświata.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Astronomowie odkryli najpotężniejszą eksplozję we wszechświecie od czasu Wielkiego Wybuchu. Eksplozja pochodziła z supermasywnej czarnej dziury znajdującej się w galaktyce położonej setki milionów lat świetlnych od Ziemi. W czasie wybuchu uwolniło się 5-krotnie więcej energii niż z wcześniejszej najpotężniejszej znanej nam eksplozji.
Obserwowaliśmy już takie wydarzenia w centrach galaktyk, ale to jest naprawdę olbrzymie. I nie wiemy, dlaczego jest tak potężne. Wybuch przebiegał bardzo powoli. Jak eksplozja w zwolnionym tempie rozciągająca się setki milionów lat, mówi profesor Melanie Johnston-Hollitt.
Do potężnego wybuchu doszło w Supergromadzie w Wężowniku. Był on tak silny, że wypalił dziurę w supergorącej plazmie otaczającej czarną dziurę.
Początkowo, gdy teleskopy działające w zakresie promieniowania rentgenowskiego zauważyły dziurę w plazmie, odrzucono hipotezę, że mogła ona powstać w wyniku eksplozji, gdyż nie wyobrażano sobie, że może dojść do tak silnego wybuchu.
Sceptycyzm był spowodowany siłą wybuchu konieczną do wywołania takiego efektu. Ale okazało się, że naprawdę do niego doszło. Wszechświat to dziwne miejsce, mówi Johnston-Hollit. Dopiero, gdy do obserwacji zaprzęgnięto radioteleskopy, naukowcy w pełni zdali sobie sprawę z tego, co odkryli. Dane z radioteleskopów pasowały do danych z teleskopów rentgenowskich jak rękawiczka do ręki, dodaje współautor badań doktor Maxim Markevitch z Goddard Space Flight Center.
Profesor Johnston-Hollitt porównuje swoją pracę do archeologii. Mamy teraz narzędzia, radioteleskopy pracujące na niskich częstotliwościach, które pozwolą nam kopać głębiej w przeszłości. Powinniśmy być w stanie wykryć więcej tego typu eksplozji, mówi.
Uczona przypomina, że odkrycia dokonano za pomocą czterech różnych teleskopów, w tym Murchison Widefield Array (MWA), którego budowa jeszcze nie została dokończona. Obecnie MWA składa się z 2048 anten. Wkrótce będziemy mogli wykorzystać 4069 anten, dzięki czemu teleskop będzie 10-krotnie bardziej czuły niż obecnie. MWA to jedna z czterech części Square Kilometre Array (SKA).
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.