Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Pestka wrzucona do naczynia z pokrojonym awokado oszukuje owoc, że nadal jest cały, co zapobiega utlenianiu i czernieniu. Teraz wygląda na to, że bezużyteczne dotąd pestki mango zostaną wykorzystane jako naturalne konserwanty, chroniące konsumentów przed listeriozą (Journal of Agricultural and Food Chemistry).

Christina Engels i zespół z University of Alberta przetworzyli trafiające przedtem na wysypisko bądź palone pestki mango, uzyskując ekstrakt z czystymi taninami. Okazało się, że hamuje on rozwój wielu szczepów bakteryjnych, w tym Gram-dodatnich pałeczek Listeria monocytogenes. To ważne odkrycie, ponieważ przebieg listeriozy bywa ciężki i niekiedy chory umiera.

Engels, która prowadziła badania na potrzeby swojej pracy dyplomowej, uważa, że podobne właściwości mogą wykazywać pestki innych owoców, np. winogron. Przetwarzając pestki dla ich tanin, przedsiębiorcy całkowicie utylizują wszystkie części owocu, zwiększając tym samym swoje zyski. Obecnie mango są jednym z najpopularniejszych owoców świata – plasują się na 5. pozycji listy podstawowych upraw owocowych.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      W budownictwie od dawna wykorzystuje się materiały pochodzenia biologicznego, np. drewno. Gdy się ich używa, nie są już jednak żywe. A gdyby tak stworzyć żyjący budulec, który jest w stanie się rozrastać, a przy okazji ma mniejszy ślad węglowy? Naukowcy nie poprzestali na zadawaniu pytań i zabrali się do pracy, dzięki czemu uzyskali beton i cegły z bakteriami.
      Zespół z Uniwersytetu Kolorado w Boulder podkreśla, że skoro udało się utrzymać przy życiu pewną część bakterii, żyjące, i to dosłownie, budynki nie są wcale tylko i wyłącznie pieśnią przyszłości.
      Pewnego dnia takie struktury będą mogły, na przykład, same zasklepiać pęknięcia, usuwać z powietrza niebezpieczne toksyny, a nawet świecić w wybranym czasie.
      Na razie technologia znajduje się w powijakach, ale niewykluczone, że kiedyś żyjące materiały poprawią wydajność i ekologiczność produkcji materiałów budowlanych, a także pozwolą im wyczuwać i wchodzić w interakcje ze środowiskiem - podkreśla Chelsea Heveran.
      Jak dodaje Wil Srubar, obecnie wytworzenie cementu i betonu do konstruowania dróg, mostów, drapaczy chmur itp. generuje blisko 6% rocznej światowej emisji dwutlenku węgla.
      Wg Srubara, rozwiązaniem jest "zatrudnienie" bakterii. Amerykanie eksperymentowali z sinicami z rodzaju Synechococcus. W odpowiednich warunkach pochłaniają one CO2, który wspomaga ich wzrost, i wytwarzają węglan wapnia (CaCO3).
      Naukowcy wyjaśnili, w jaki sposób uzyskali LBMs (od ang. living building material, czyli żyjący materiał), na łamach pisma Matter. Na początku szczepili piasek żelatyną, pożywkami oraz bakteriami Synechococcus sp. PCC 7002. Wybrali właśnie żelatynę, bo temperatura jej topnienia i przejścia żelu w zol wynosi ok. 37°C, co oznacza, że jest kompatybilna z temperaturami, w jakich sinice mogą przeżyć. Poza tym, schnąc, żelatynowe rusztowania wzmacniają się na drodze sieciowania fizycznego. LBM trzeba schłodzić, by mogła się wytworzyć trójwymiarowa hydrożelowa sieć, wzmocniona biogenicznym CaCO3.
      Przypomina to nieco robienie chrupiących ryżowych słodyczy, gdy pianki marshmallow usztywnia się, dodając twarde drobinki.
      Akademicy stworzyli łuki, kostki o wymiarach 50x50x50 mm, które były w stanie utrzymać ciężar dorosłej osoby, i cegły wielkości pudełka po butach. Wszystkie były na początku zielone (sinice to fotosyntetyzujące bakterie), ale stopniowo brązowiały w miarę wysychania.
      Ich plusem, poza wspomnianym wcześniej wychwytem CO2, jest zdolność do regeneracji. Kiedy przetniemy cegłę na pół i uzupełnimy składniki odżywcze, piasek, żelatynę oraz ciepłą wodę, bakterie z oryginalnej części wrosną w dodany materiał. W ten sposób z każdej połówki odrośnie cała cegła.
      Wyliczenia pokazały, że w przypadku cegieł po 30 dniach żywotność zachowało 9-14% kolonii bakteryjnych. Gdy bakterie dodawano do betonu, by uzyskać samonaprawiające się materiały, wskaźnik przeżywalności wynosił poniżej 1%.
      Wiemy, że bakterie rosną w tempie wykładniczym. To coś innego niż, na przykład, drukowanie bloku w 3D lub formowanie cegły. Gdybyśmy mogli uzyskiwać nasze materiały [budowlane] na drodze biologicznej, również bylibyśmy w stanie produkować je w skali wykładniczej.
      Kolejnym krokiem ekipy jest analiza potencjalnych zastosowań platformy materiałowej. Można by dodawać bakterie o różnych właściwościach i uzyskiwać nowe materiały z funkcjami biologicznymi, np. wyczuwające i reagujące na toksyny w powietrzu.
      Budowanie w miejscach, gdzie zasoby są mocno ograniczone, np. na pustyni czy nawet na innej planecie, np. na Marsie? Czemu nie. W surowych środowiskach LBM będą się sprawować szczególnie dobrze, ponieważ do wzrostu wykorzystują światło słoneczne i potrzebują bardzo mało materiałów egzogennych. [...] Na Marsa nie zabierzemy ze sobą worka cementu. Kiedy wreszcie się tam wyprawimy, myślę, że naprawdę postawimy na biologię.
      Badania sfinansowała DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych).

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Itzel Paniagua i Alondra Montserrat Lopez, studentki Narodowego Uniwersytetu Autonomicznego Meksyku (UNAM), opracowały biodegradowalne rurki do picia z obierek mango. Dzięki wynalazkowi zdobyły pierwszą nagrodę Uniwersyteckich Targów Nauki i Techniki.
      Dziewczyny przyznają, że ich motywacją była chęć zrobienia czegoś dla środowiska.
      Mango jest bardzo popularnym owocem. Dla obierek nie znajdowano dotąd zastosowania, jednak dzięki Itzel i Alondrze może się to wkrótce zmienić. Ich przepis na rurki? Najpierw trzeba zmiksować skórki z niewielką ilością wody. W drugim naczyniu miesza się skrobię z wodą. Następnie do pulpy mango dodaje się trochę krochmalu. Powstałą w ten sposób mieszaninę wylewa się na tacę. Gdy zastygnie i podeschnie, tworząc arkusz, można zacząć zwijać w rurkę. Żeby rurka się trzymała (zachowała kształt), miejsce złączenia należy posmarować sokiem z liścia opuncji (nopalu). Rurka jest trochę grubsza od zwykłej rurki. Ma brązowawy kolor. Pachnie mango, ale nie nadaje napojowi smaku owocu.
      Choć wszystko wydaje się proste, studentki pracowały nad recepturą ponad rok. Musiałyśmy przeprowadzić sporo badań i testów. Były trudności, ale w końcu nam się udało. Chciałybyśmy, by UNAM wspierał nas w kontynuacji projektu aż do komercjalizacji.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Ekstrakt kwasu taninowego, pozyskany z wina, herbaty lub kawy, pozwoli wyprodukować znacznie bardziej wytrzymałą elastyczną elektronikę ubieralną. Naukowcy z University of Manchester zauważyli, że taniny poprawiają właściwości mechaniczne tego typu urządzeń.
      Uczeni opracowali już ubieralne urządzenia, takie jak pojemnościowe czujniki oddechu czy sztuczne dłonie, wykorzystując przy tym materiały wzmocnione za pomocą tanin. To bardzo ważne osiągnięcie, gdyż wcześniejsza elastyczna elektronika ubieralna szybko ulegała awarii wskutek wielokrotnego zginania.
      Głównym celem naszych prac jest opracowanie wygodnych w noszeniu ubieralnych urządzeń stanowiących elastyczny interfejs pomiędzy człowiekiem a maszyną, mówi szef grupy badawczej doktor Xuqing Liu. Tradycyjne urządzenia ubieralne łatwo ulegały awarią ze względu na słabe połączenia z włóknami. Gdy wylejemy na ubranie czerwone wino, herbatę lub kawę, bardzo trudno jest pozbyć się takich plam. Przyczyną jest kwas taninowy, który mocno przywiera do powierzchni włókien. Ta zdolność jest właśnie tym, czego potrzebujemy do stworzenia wytrzymałych urządzeń ubieralnych, dodaje uczony.
      Kwas taninowy wzmacnia połączenia pomiędzy włóknami tkaniny a urządzeniami elektronicznymi, zwiększając przewodnictwo oraz żywotność urządzeń. To słabe połączenia są przyczyną awarii, gdyż po wielokrotnym zginaniu urządzenia elektroniczne odłączają się od tkaniny.
      Co interesujące, podczas eksperymentów naukowcy używali zarówno komercyjne dostępnych tanin, jak i prowadzili badania zanurzając tkaniny w kawie, winie czy herbacie i uzyskiwali takie same rezultaty. To zaś daje nadzieję, że nowa technologia będzie tania.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wiele wskazuje, że ekstrakt z liści klonu czerwonego zawojuje rynek kosmetyczny. Naukowcy wykazali bowiem, że zapobiega on powstawaniu zmarszczek.
      Wcześniej specjaliści analizowali chemię i wpływ na zdrowie soków i syropu uzyskiwanego z klonu cukrowego i klonu czerwonego. Historyczne zapiski sugerowały jednak, że inne części drzew także mogą być użyteczne. Indianie wykorzystywali liście klonu czerwonego w swojej tradycyjnej medycynie. Dlaczego mielibyśmy więc ignorować liście? - pyta retorycznie dr Navindra P. Seeram z Uniwersytetu Rhode Island.
      Zmarszczki powstają, gdy enzym elastaza rozkłada elastynę w skórze. "Chcieliśmy sprawdzić, czy wyciągi z liści klonu czerwonego mogą zmniejszyć aktywność elastazy" - opowiada dr Hang Ma.
      Amerykanie skoncentrowali się na fenolowych związkach z liści: galotaninach zawierających rdzeń z sorbitolu (ang. glucitol-core-containing gallotannins, GCGs). Sprawdzali, w jaki sposób GCGs wchodzą w interakcje z elastazą, by zahamować jej aktywność i jak budowa cząsteczki wpływa na zdolność hamowania działania enzymu.
      Okazało się, że GCGs z wieloma grupami 3,4,5-trihydroksybenzoilowymi (ang. galloyl groups) były skuteczniejsze od GCGs z jedną taką grupą.
      Akademicy podkreślają, że GCGs mogą znacznie więcej niż li tylko przeszkadzać elastazie. Wcześniejsze badania grupy Seerama pokazały bowiem, że chronią one skórę przed stanem zapalnym i rozjaśniają ciemne plamy, takie jak piegi czy plamy soczewicowate.
      "Można sobie wyobrazić, że te ekstrakty będą napinać ludzką skórę jak roślinny botoks. Tyle tylko, że zabieg będzie polegał na miejscowej aplikacji, a nie na wstrzykiwaniu toksyny".
      Seeram i Ma opracowali oczekujący na przyznanie patentu preparat Maplifa, który zawiera GCGs z letnich i jesiennych liści oraz soku klonu.
      Ekipa liczy na znalezienie rynku dla Maplify w sektorze kosmetycznym i suplementów diety.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dwie szklanki mango dziennie wywierają korzystny wpływ na ciśnienie skurczowe zdrowych kobiet w wieku pomenopauzalnym. Podczas eksperymentu owoc pomagał w rozluźnieniu naczyń już 2 godziny po spożyciu. Oprócz tego u części ochotniczek badanych przez zespół z Uniwersytetu Kalifornijskiego w Davis stwierdzono korzystne zmiany w zakresie wydychanego metanu, co może odzwierciedlać wpływ na procesy fermentacyjne w jelitach.
      To pierwsze badanie, które pokazuje pozytywny wpływ naczyniowy spożycia mango na ludzi - podkreśla Robert Hackman.
      W ramach najnowszego studium 24 zdrowe kobiety w wieku pomenopauzalnym spożywały przez 2 tygodnie 330 g mango dziennie. Do badania wybrano odmianę Ataúlfo, bo zawiera dużo polifenoli, np. mangiferyny, kwercetyny czy kwasu galusowego.
      Po 14 dniach panie miały wrócić do swojej zwykłej diety, powiedziano im tylko, by na 13 dni wyeliminowały z niej mango. Podczas wizyt w laboratorium mierzono tętno i ciśnienie, a także pobierano próbki krwi. Oprócz tego analizowano próbki wydychanego powietrza.
      Okazało się, że 2 godziny od zjedzenia mango ciśnienie skurczowe i ciśnienie tętna (różnica skurczowego i rozkurczowego ciśnienia tętniczego) były znacząco niższe.
      Analiza próbek powietrza wykazała, że wskutek zachodzącej w jelitach fermentacji 6 pań wydychało metan. Po spożyciu mango u 3 z nich ilość tego gazu znacząco spadła.

      « powrót do artykułu
×
×
  • Create New...