Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Guma gellan, zagęstnik stosowany w jogurtach, deserach mlecznych czy galaretkach, może być wykorzystana jako rusztowanie dla tkanki podczas prac nad sztucznymi mięśniami (Soft Matter).

Doktorant Cameron Ferris z Instytutu Badań nad Inteligentnymi Polimerami University of Wollongong posłużył się gumą gellanową, wytwarzaną przez bakterie Pseudomonas elodea. Jest to dodatek do żywności (oznaczany symbolem E 418). Występuje w koncentratach deserów, dżemach i marmoladach, sosach konserw rybnych czy w mlecznych napojach fermentowanych. Pełni funkcję zagęstnika, substancji żelującej i stabilizatora. Jak wyjaśnia Ferris, guma gellan jest wyjątkowo użyteczna, ponieważ staje się żelem w temperaturze zaledwie 37°C, a to wartość dobra dla żywych komórek.

Doktorant pracuje m.in. nad sztuczną tkanką mięśnia sercowego, którą można by zastępować fragmenty uszkodzone przez zawał. Z wyników wcześniejszych badań innych naukowców Ferris dowiedział się, że mięśnie i serce potrzebują elektrycznej stymulacji, by osiągnąć stan pełnego zróżnicowania funkcjonalnego. Australijczykowi udało się stworzyć przewodzące prąd rusztowanie z mieszaniny gumy gellanowej i nanorurek węglowych. Potem wyhodował na nim fibroblasty, ale ostatecznie wyeliminował nanorurki, sugerując się doniesieniami o niewiadomych skutkach ich stosowania. Niektóre studia sugerują, że są bezpieczne, a organizm je usuwa, gdy rusztowanie się rozkłada. Inne wskazują, że są cytotoksyczne lub że akumulują się w płucach.

Mając to na uwadze, Ferris skłania się raczej ku rozwiązaniu wykorzystującemu drukarkę atramentową. Dzięki temu dałoby się lepiej kontrolować strukturę żelowego rusztowania. W ten sposób różne typy komórek trafiałyby w różne miejsca, umożliwiając np. uzyskanie naczyń krwionośnych. Doktorant posłużył się też specjalnymi prążkami, które pełnią w przypadku komórek mięśniowych rolę drogowskazów – pozwalają im się ułożyć w odpowiednim kierunku.

Nad przebiegiem prac czuwał dr Marc in het Panhuis. Obaj panowie mówią o wielorakich zastosowaniach wynalazku, w tym o odtwarzaniu za jego pomocą rdzenia kręgowego, aplikacjach bionicznych i dostarczaniu leków.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Wiadomo już, czemu wiele osób w czasie wykonywania rezonansu magnetycznego lub podczas wyciągania ze skanera doświadcza oczopląsu. Silne pole magnetyczne wprawia w ruch endolimfę wypełniającą kanały błędnika (Current Biology).
      Wskutek ruchów cieczy w uchu wewnętrznym pacjenci mają wrażenie spadania lub nieoczekiwanych, chwiejnych ruchów. Zespół z Uniwersytetu Johnsa Hopkinsa, który pracował pod kierownictwem Dale’a C. Robertsa, umieścił w aparacie MRI 10 osób ze zdrowym błędnikiem i 2 z błędnikiem niedziałającym w skanerze. Skupiano się nie tylko na autoopisie dot. zawrotów głowy, ale również na nystagmusie, czyli niezależnych od woli poziomych drganiach gałek ocznych (in. nazywanych oczopląsem położeniowym). Ponieważ wskazówki wzrokowe mogą je stłumić, eksperyment przeprowadzano w ciemnościach.
      Nagrania z kamery noktowizyjnej pokazały, że nystagmus wystąpił u wszystkich zdrowych badanych, nie pojawił się zaś u pozostałej dwójki. Sugeruje to, że (zdrowy) błędnik odgrywa kluczową rolę w zawrotach głowy w skanerze MRI.
      Amerykanie zastanawiali się, jak natężenie pola magnetycznego wytwarzanego przez skaner wpływa na błędnik, dlatego ochotników umieszczano na różne okresy w aparatach o niejednakowych parametrach technicznych. Przyglądano się oczopląsowi położeniowemu podczas wkładania i wyjmowania ze skanera (i to zarówno podczas wkładania i wyjmowania tradycyjną drogą, jak i od tyłu tuby). W ten sposób oceniano wpływ kierunku pola magnetycznego na wrażenia ochotników.
      Silniejsze pole magnetyczne wywoływało znacznie szybszy nystagmus. Ruchy gałek ocznych utrzymywały się cały czas, bez względu na długość sesji. Kierunek ruchu oczu zmieniał się w zależności od drogi wprowadzania/wyciągania człowieka ze skanera (czyli kierunku pola). Zespół Robertsa uważa, że oczopląs położeniowy to rezultat wzajemnych oddziaływań między prądami elektrycznymi przepływającymi przez endolimfę a polem magnetycznym. Siła Lorentza wpływa na ruch ładunków elektrycznych w uchu wewnętrznym, odbierany przez komórki zmysłowe jako pobudzenie.
      Akademicy z Uniwersytetu Johnsa Hopkinsa sądzą, że ich odkrycia mogą zmienić interpretację wyników uzyskanych za pomocą funkcjonalnego rezonansu magnetycznego. Ich autorzy analizują przepływ krwi w mózgu pod wpływem określonych zadań, tymczasem okazuje się, że skaner jako taki wzmacnia aktywność związaną z ruchem i równowagą. Wykazaliśmy, że nawet gdy sądzimy, że nic się w mózgu nie dzieje, kiedy ochotnicy znajdują się w aparacie, w rzeczywistości dzieje się dużo, ponieważ samo MRI wywołuje jakiś efekt – podsumowuje Roberts, dodając, że niewykluczone, iż silne pole skanera do rezonansu magnetycznego przyda się otolaryngologom jako bardziej komfortowa metoda badania błędnika (alternatywa dla standardowej elektronystagmografii).
    • By KopalniaWiedzy.pl
      Przechowywanie energii słonecznej w postaci chemicznej ma tę przewagę nad przechowywaniem jej w elektrycznych akumulatorach, że energię taką można zachować na długi czas. Niestety, taki sposób ma też i wady - związki chemiczne przydatne do przechowywania energii ulegają degradacji po zaledwie kilku cyklach ładowania/rozładowywania. Te, które nie degradują, zawierają ruten - rzadki i drogi pierwiastek. W 1996 roku udało się znaleźć molekułę - fulwalen dirutenu - która pod wpływem światła słonecznego przełącza się w jeden stan i umożliwia kontrolowane przełączanie do stanu pierwotnego połączone z uwalnianiem energii.
      W ubiegłym roku profesor Jeffrey Grossman wraz ze swoim zespołem z MIT-u odkryli szczegóły działania fulwalenu dirutenu, co dawało nadzieję na znalezienie zastępnika dla tej drogiej molekuły.
      Teraz doktor Alexie Kolpak we współpracy z Grossmanem znaleźli odpowiednią strukturę. Połączyli oni węglowe nanorurki z azobenzenem. W efekcie uzyskali molekułę, której właściwości nie są obecne w obu jej związkach składowych.
      Jest ona nie tylko tańsza od fulwalenu dirutenu, ale charakteryzuje się również około 10 000 razy większą gęstością energetyczną. Jej zdolność do przechowywania energii jest porównywalna z możliwościami baterii litowo-jonowych.
      Doktor Kolpak mówi, że proces wytwarzania nowych molekuł pozwala kontrolować zachodzące interakcje, zwiększać ich gęstość energetyczną, wydłużać czas przechowywania energi i - co najważniejsze - wszystkie te elementy można kontrolować niezależnie od siebie.
      Grossman zauważa, że olbrzymią zaletą termochemicznej metody przechowywania energii jest fakt, że to samo medium wyłapuje energię i ją przechowuje. Cały mechanizm jest zatem prosty, tani, wydajny i wytrzymały. Ma on też wady. W takiej prostej formie nadaje się tylko do przechowywania energii cieplnej. Jeśli potrzebujemy energii elektrycznej, musimy ją wytworzyć z tego ciepła.
      Profesor Grossman zauważa też, że koncepcja, na podstawie której stworzono funkcjonalne nanorurki z azobenzenem jest ogólnym pomysłem, który może zostać wykorzystany także w przypadku innych materiałów.
      Podstawowe cechy, jakimi musi charakteryzować się materiał używany do termochemicznego przechowywania energii to możliwość przełączania się w stabilne stany pod wpływem ciepła oraz istnienie odkrytego przez Grossmana w ubiegłym roku etapu przejściowego, rodzaju bariery energetycznej pomiędzy oboma stabilnymi stanami. Bariera musi być też odpowiednia do potrzeb. Jeśli będzie zbyt słaba, molekuła może samodzielnie przełączać się pomiędzy stanami, uwalniając energię wtedy, gdy nie będzie ona potrzebna. Zbyt mocna bariera spowoduje zaś, że pozyskanie energii na żądanie będzie trudne.
      Zespół Grossmana i Kolpak szuka teraz kolejnych materiałów, z których można będzie tworzyć molekuły służące do termochemicznego przechowywania energii.
    • By KopalniaWiedzy.pl
      Inżynierowie z Duke University teoretycznie wyliczyli, że za pomocą odpowiednio zaprojektowanego metamateriału możliwe będzie znaczące zmniejszenie strat energii wysyłanej bezprzewodowo.
      Podczas bezprzewodowego przesyłania energii jej większość jest tracona. Olbrzymich strat można uniknąć tylko wówczas, gdy odbiornik i nadajnik znajdują się bardzo blisko siebie. Jednak uczeni z Duke stwierdzili, że jeśli pomiędzy urządzeniami umieścimy przewidziany przez nich teoretycznie metamateriał, to skupi on energię tak, że mimo większej odległości nadajnika od odbiornika, straty energii będą minimalne.
      Obecnie udaje się przesłać niewielkie ilości energii na krótkie odległości, na przykład możemy zasilić tagi RFID. Jednak większe ilości energii, takie jak promienie lasera czy mikrofale mogłyby spalić wszystko na swojej drodze - mówi Yaroslav Urzhumov z Duke'a.
      Nasze obliczenia wskazują, że powinno być możliwe wykorzystanie metamateriału do zwiększenia ilości transmitowanej energii bez występowania efektów ubocznych - dodaje.
      Urzhumov pracuje w laboratorium profesora Davida R. Smitha, którego zespół jako pierwszy na świecie zaprezentował metamateriał działający jak czapka-niewidka.
      Jako że metamateriały mogą działać tak, jakby część przestrzeni nie istniała to, zdaniem Urzhumova, ich zastosowanie pomiędzy nadajnikiem energii a odbiornikiem wywoła taki efekt, jakby urządzenia były bardzo blisko siebie. A zatem straty energii powinny być minimalne.
      Taki materiał, o ile powstanie, powinien składać się z setek lub tysięcy pętli przewodzących ułożonych w jedną macierz. Pętle takie będą umieszczone na podłożu z miedzi i włókna szklanego. System taki musi być dostrojony do specyficznego odbiornika, a ten z kolei musi być zestrojony z nadajnikiem - stwierdził Urzhumov.
    • By KopalniaWiedzy.pl
      Obecnie filtry w papierosach produkuje się z octanu celulozy, który absorbuje nikotynę, substancje smoliste i wielopierścieniowe węglowodory aromatyczne. Chińczycy odkryli jednak, że dodatek nanomateriałów z tlenku tytanu(IV) może zatrzymać jeszcze więcej szkodliwych związków (Chemical Communications).
      Naukowcy już wcześniej próbowali wykorzystywać w filtrach nanomateriały. Nanorurki węglowe i mezoporowate nanostruktury krzemionkowe sprawdzały się dobrze w tej nowej roli, jednak w dużej mierze dyskwalifikowała je wysoka cena. Poza tym wspominano o możliwych zagrożeniach dla zdrowia.
      Mingdeng Wei z Uniwersytetu w Fuzhou nawiązał współpracę ze specjalistami z Fujian Tobacco Industrial Corporation. Naukowcy ustalili, że nanorurki i nanopłachty dobrze przefiltrowują dym papierosowy, są stosunkowo tanie i co najważniejsze, TiO2 stosuje się już w przemyśle kosmetycznym i spożywczym, wiadomo więc, że jest bezpieczny dla zdrowia.
      Zespół z Państwa Środka porównywał papierosy z nanorurkami i nanopłachtami z tlenku tytanu(IV). Wykorzystano maszynę do palenia papierosów, a następnie wysokosprawną chromatografię cieczową (ang. high performance liquid chromatography, HPLC) oraz chromatografię jonową. Dzięki tym metodom oceniono ilość wychwyconych substancji, w tym cyjanowodoru czy amoniaku. Okazało się, że nanorurki są 2-krotnie wydajniejsze od nanopłacht.
      Wydaje się, że warto by było też porównać papierosy z filtrem dopełnionym nanorurkami z TiO2 z popularnymi ostatnio e-papierosami. Lekarze podkreślają jednak, że i tak najskuteczniejszą metodą ograniczenia ilości szkodliwych substancji nadal pozostaje rzucenie palenia.
    • By KopalniaWiedzy.pl
      Badania nad zwiększeniem wydajności ogniw słonecznych ciągle trwają, a uczeni z MIT-u postanowili zaprząc do pomocy... wirusy. W Nature Nanotechnology opublikowali artykuł, w którym opisują w jaki sposób wirusy mogą pomóc w tworzeniu ogniw słonecznych z nanorurek.
      Od pewnego czasu wiadomo, że nanorurki mogą zwiększyć efektywność zbierania elektronów przez ogniwa. Jednak użycie nanorurek napotyka na dwa poważne problemy. Pierwszy z nich to fakt, że podczas produkcji nanorurek uzyskiwana jest mieszanina dwóch typów. Jedne nanorurki zachowują się jak półprzewodniki, drugie jak metale. Nowe badania wykazały, że tylko nanorurki-półprzewodniki zwiększają wydajność ogniw. Nanorurki-metale zmniejszają ją. Ponadto nanorurki mają tendencję do zlepiania się ze sobą, co zmniejsza ich efektywność.
      Studenci Xiangnan Dang i Hyunjun Yi, pracujący pod kierunkiem profesor Angeli Belcher, odkryli, że genetycznie zmodyfikowany wirus M13 może zostać użyty do kontrolowania ułożenia nanorurek na powierzchni, dzięki czemu są one od siebie oddzielone nie powodując krótkich spięć oraz nie mogą zbić się w grupie.
      Młodzi naukowcy przetestowali swojego wirusa na tanich ogniwach cienkowarstwowych DSSC (dye-sensitized solar cells), zwiększając ich wydajność z 8 do 10,6%, czyli aż o 33%. To kolosalny postęp, tym większy, jeśli weźmiemy pod uwagę fakt, że wirusy i nanorurki stanowią tylko 0,1% wagi ulepszonego ogniwa. Co więcej, taką samą technikę można stosować na droższych, bardziej zaawansowanych ogniwach.
      Zastosowanie wirusów i nanorurek ułatwia elektronom w ogniwie dotarcie do kolektora. Wirusy mają dwa zadania. Po pierwsze przyczepiają do nanorurek peptydy, które utrzymują je z dala od siebie. Każdy z wirusów może utrzymywać od 5 do 10 nanorurek, z których każda jest przytwierdzona około 300 molekułami. Ponadto wirusy są wykorzystywane w procesie pokrywania nanorurek dwutlenkiem tytanu, głównym składnikiem ogniw DSSC.
      Co ciekawe, jeden wirus może spełniać obie funkcje, a przełączanie pomiędzy poszczególnymi zadaniami jest regulowane za pomocą zmian kwasowości środowiska w którym odbywa się cały proces.
      Wirusy ułatwiają też rozprowadzanie nanorurek w wodzie, co pozwala na wykorzystywanie w produkcji ogniw taniej metody z użyciem roztworów wodnych przebiegającej w temperaturze pokojowej.
      Profesor Prashant Kamat z Notre Dame University mówi, że już wcześniej próbowano wykorzystać nanorurki do ulepszenia ogniw słonecznych, jednak uzyskiwano minimalne zwiększenie ich wydajności. Tymczasem prace uczonych z MIT-u są „imponujące".
      Prawdopodobnie zastosowanie wirusa umożliwiło lepsze połączenie nanocząstek TiO2 z nonarurkami. Ścisłe ich połączenie jest niezbędne do szybkiego i efektywnego transportu elektronów" - mówi uczony.
      Przypomina, że ogniwa DSSC są już sprzedawane w Korei, Japonii i na Tajwanie, a tak znaczące zwiększenie ich wydajności z pewnością zainteresuje przemysł. Tym bardziej, że zastosowanie nowej techniki wymaga dodania do procesu produkcyjnego tylko jednego, prostego procesu, zatem linie produkcyjne będzie można przystosować doń szybko i niedrogo.
×
×
  • Create New...