Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Lepsze badanie komórek
dodany przez
KopalniaWiedzy.pl, w Medycyna
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Komórki wytwarzają wiele różnych związków i kompleksów, które mogą zajmować aż do 40% jej wnętrza. Z tego powodu wnętrze komórki jest niezwykle zatłoczonym środowiskiem, w którym charakteryzacja reakcji biochemicznych jest skomplikowana i złożona, pomimo ogromnego postępu nauki. Dlatego naukowcy zazwyczaj używają obojętnych chemicznie molekuł takich jak niejonowe polimery, aby naśladować naturę w probówce i poza komórką tworzyć zatłoczenie odpowiadającemu temu w naturze.
Jak się jednak okazuje te powszechnie uważane za obojętne dla reakcji biochemicznych związki mogą kompleksować jony. A ponieważ równowaga wielu reakcji biochemicznych zależnych jest od stężenia jonów, jest to szczególnie istotne. Ostatnio, badacze z Instytutu Chemii Fizycznej Polskiej Akademii Nauk z grupy prof. Roberta Hołysta przedstawili badania przybliżające nas do zrozumienia 1000-krotnych zmian w stałych równowagi tworzenia się kompleksu biochemicznego, gdy zachodzi ona w bardzo zatłoczonym środowisku. Przyjrzyjmy się ich badaniom.
Nasze ciało składa się z trylionów komórek bezustannie współpracujących ze sobą i pełniącymi różne funkcje. Co więcej, nasz organizm w każdej sekundzie wykonuje miliardy zawiłych operacji, a my nawet ich nie zauważamy. Reakcje przebiegające we wnętrzu pojedynczej komórki, a zwłaszcza specyficzne interakcje między indywidualnymi cząsteczkami bardzo często zależą od stężenia jonów w danym miejscu. Wiele reakcji jest szczególnie wrażliwych na zmiany siły jonowej, dlatego równowaga tworzenia się wielu kompleksów biochemicznych (np. kompleksów białko-białko, białko-RNA czy tworzenie się podwójnej nici DNA) może się istotnie zmieniać w zależności od dostępności jonów.
Sprawę ponad to komplikuje fakt, złożona budowa komórek ludzkich. Przyjrzyjmy się bliżej cytoplazmie wewnątrz komórki. Można ją porównać do basenu pełnego pływających w nim obiektów o różnych rozmiarach i kształtach takie jak rybosomy, małe cząsteczki, białka lub kompleksy białko-RNA, nitkowate składniki cytoszkieletu, i organelle np. mitochondria, lizosomy, jądro itd. Wszystko to sprawia, że lepka, galaretowata struktura cytoplazmy jest bardzo złożonym i zatłoczonym środowiskiem. W takich warunkach każdy parametr, a w szczególności siła jonowa i pH może znacząco wpłynąć na przebieg reakcji biochemicznych. Jednym z mechanizmów utrzymywania równowagi jonowej w komórce są pompy sodowo-potasowe znajdujące się w błonie komórkowej prawie każdej ludzkiej komórki, które to są wspólną cechą dla całego życia komórkowego.
Wspomniane zatłoczone środowisko jest często odtwarzane sztucznie, aby zrozumieć reakcje biochemiczne zachodzące wewnątrz żywych komórek. Jako modelu cytoplazmy komórki in vitro zazwyczaj używa się roztworów związków niejonowych w dużych stężeniach (∼40–50% masowego). Najczęstszymi molekułami wykorzystywanymi w tym celu są polietylen, glikol etylenowy, glicerol, fikol, oraz dekstrany. Powyższe cząsteczki uważane są powszechnie za chemicznie nieaktywne.
Zaskakujące wyniki w tej dziedzinie zaprezentowali naukowcy z Instytutu Chemii Fizycznej PAN. Wykorzystali oni hybrydyzację oligonukleotydów DNA jako modelową, bardzo wrażliwą na stężenie jonów, reakcję biochemiczną. Stabilność tworzenia kompleksu badano w obecności różnych związków chemicznych zwiększających zatłoczenie w środowisku prowadzonych reakcji oraz w funkcji siły jonowej.
Stężenie jonów w roztworze opisywane jest siłą jonową, która określa efektywną odległość elektrostatycznego odpychania między poszczególnymi cząsteczkami. Dlatego też sprawdziliśmy wpływ siły jonowej na hybrydyzację DNA – zauważa Krzysztof Bielec, pierwszy autor artykułu opisującego odkrycie grupy badawczej.
Przeprowadzone eksperymenty wykazały, że interakcje między cząsteczkami są wzmacniane przy wyższym stężeniu soli oraz że dodatek polimerów zwiększających zatłoczenie i tym samym lepkość środowiska reakcyjnego także wpływa na dynamikę procesów biochemicznych utrudniając tworzenie kompleksów.
Krzysztof Bielec komentuje: Najpierw sprawdziliśmy wpływ zatłoczenia w środowisku reakcyjnym na stałą równowagi hybrydyzacji DNA. Tworzenie dwuniciowego szkieletu DNA bazuje na oddziaływaniu elektrostatycznym między dwiema ujemnie naładowanymi nićmi. Monitorowaliśmy wpływ zatłoczonego środowiska na hybrydyzację komplementarnych nici o stężeniu nanomolowym charakterystycznym dla wielu reakcji biochemicznych w komórce. Następnie określiliśmy kompleksowanie jonów sodu w zależności od zatłoczenia. Miejsce wiązania kationu w strukturze związku zwiększającego lepkość może różnić się nawet pomiędzy cząsteczkami zawierającymi te same grupy funkcyjne. Dlatego obliczyliśmy oddziaływanie z poszczególnymi cząsteczkami w przeliczeniu na monomer i polimer upraszczając interakcje między jonami a cząsteczkami typu przeszkoda zwiększająca lepkość.
Ku zaskoczeniu badaczy, okazało się, że powszechnie uważane za niereaktywne niejonowe polimery używane do naśladowania warunków panujących w cytoplazmie mogą kompleksować (niejako podkradać) jony niezbędne do efektywnej hybrydyzacji DNA.
Pomimo, że nie jest to dominująca interakcja pomiędzy tymi polimerami a jonami to, gdy stosuje się ogromne stężenie polimerów (kilkadziesiąt procent masy roztworu) efekt jest znaczący.
Określając stabilność kompleksów powstających w obecności konkretnych związków zwiększających zatłoczenie w badanym środowisku reakcyjnym autorzy badania wykazali wpływ jonów na poziomie molekularnym zbliżając nas do lepszego naśladowania warunków panujących w naturze.
Wyniki tych eksperymentów rzucają światło na wyjaśnianie zjawisk otrzymywane dotychczas za pomocą wspomnianych systemów polimerowych oraz skłaniają do rewizji mechanizmów zachodzących w komórce, jeśli badane były środowiskach otrzymywanych sztucznie.
Dzięki wynikom przedstawionym przez naukowców z IChF PAN jesteśmy o krok bliżej zrozumienia poszczególnych procesów molekularnych zachodzących wewnątrz komórek. Szczegółowy opis jest niezwykle ważny w wielu dziedzinach jak na przykład przy projektowaniu nowych leków, zwłaszcza w przewidywaniu konkretnych procesów zachodzących w komórkach podczas leczenia. Może być również pomocny w precyzyjnym planowaniu eksperymentów in vitro. Praca badaczy z IChF PAN została opublikowana w The Journal of Physical Chemistry Letters
« powrót do artykułu -
przez KopalniaWiedzy.pl
Wiele trapiących nas chorób ma związek z nieprawidłowo działającymi komórkami. Być może udało by się je skuteczniej leczyć, ale najpierw naukowcy muszą szczegółowo poznać budowę i funkcjonowanie komórek. Dzięki połączeniu sztucznej inteligencji oraz technik mikroskopowych i biochemicznych uczeni z Wydziału Medycyny Uniwersytetu Kalifornijskiego w San Diego (UCSD) dokonali ważnego kroku w kierunku zrozumienia komórek ludzkiego organizmu.
Dzięki mikroskopom możemy dojrzeć struktury komórkowe wielkości pojedynczych mikrometrów. Z kolei techniki biochemiczne, w których wykorzystuje się pojedyncze proteiny, pozwalają na badanie struktur wielkości nanometrów, czyli 1/1000 mikrometra. Jednak poważnym problemem w naukach biologicznych jest uzupełnienie wiedzy o tym, co znajduje się w komórce pomiędzy skalą mikro- a nano-. Okazuje się, że można to zrobić za pomocą sztucznej inteligencji. Wykorzystując dane z wielu różnych źródeł możemy ją poprosić o ułożenie wszystkiego w kompletny model komórki, mówi profesor Trey Ideker z UCSD.
Gdy myślimy o komórce, prawdopodobnie przyjdzie nam do głowy schemat ze szkolnych podręczników do biologii, z jego mitochondrium, jądrem komórkowym i retikulum endoplazmatycznym. Jednak czy jest to pełny obraz? Zdecydowanie nie. Naukowcy od dawna zdawali sobie sprawę z tego, że więcej nie wiemy niż wiemy. Teraz w końcu możemy przyjrzeć się komórce dokładniej, dodaje uczony. Ideker i Emma Lundberg ze szwedzkiego Królewskiego Instytutu Technicznego stali na czele zespołu, który jest autorem najnowszego osiągnięcia.
Wykorzystana przez naukowców nowatorska technika nosi nazwę MuSIC (Multi-Scale Integrated Cell). Podczas pilotażowych badań MuSIC ujawniła istnienie około 70 struktur obecnych w ludzkich komórkach nerek. Połowa z nich nie była dotychczas znana. Zauważono np. grupę białek tworzących nieznaną strukturę. Po bliższym przyjrzeniu się naukowcy stwierdzili, że wiąże ona RNA. Prawdopodobnie struktura ta bierze udział w splicingu, czyli niezwykle ważnym procesie składania genu.
Twórcy MuSIC od lat próbowali stworzyć mapę procesów zachodzących w komórkach. Tym, co różni MuSIC od podobnych systemów jest wykorzystanie technik głębokiego uczenia się do stworzenia mapy komórki bezpośrednio z obrazów mikroskopowych. System został wyćwiczony tak, by bazując na dostępnych danych stworzył model komórki. Nie mapuje on specyficznych struktur w konkretnych lokalizacjach, tak jak mamy to w schematach uczonych w szkole, gdyż niekoniecznie zawsze znajdują się one w tym samym miejscu.
Na razie w ramach badań pilotażowych uczeni opracowali za pomocą MuSIC 661 protein i 1 typ komórki. Następnym celem badań będzie przyjrzenie się całej komórce, a później innym rodzajom komórek, komórkom u różnych ludzi i u różnych gatunków zwierząt. Być może z czasem będziemy w stanie lepiej zrozumieć molekularne podstawy różnych chorób, gdyż będziemy mogli wyłapać różnice pomiędzy zdrowymi a chorymi komórkami, wyjaśnia Ideker.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Gdy naukowcy z University of Chicago i Argonne National Laboratory porównali ponad 15 000 synaps u makaków i myszy, ze zdumieniem zauważyli, że neurony w korze wzrokowej makaków mają od 2 do 5 razy mniej synaps niż neurony u myszy. Różnica wynikać może prawdopodobnie z metabolicznego kosztu utrzymywania synaps. Naczelne uważane są za bardziej inteligentne od gryzoni, tymczasem okazuje się, że w neuronach myszy występuje więcej synaps.
Po dokonaniu odkrycia naukowcy zasiedli do modelowania komputerowego, które wykazało, że im bardziej rozbudowana sieć neuronów, tym mniej synaps w każdym neuronie. Tworzenie i utrzymanie synaps jest tak kosztowne, że ich liczba jest ograniczana.
David Freedman z UChicago i Narayanan Kasthuri z Argonne przyjrzeli się zarówno synapsom pobudzającym jak i hamującym. Większość wcześniejszych badań skupiała się na synapsach pobudzających. Za pomocą mikroskopu elektronowego wykonali obrazy 107 neuronów z kory wzrokowej makaków i 81 neuronów kory wzrokowej myszy. Okazało się, że w 107 neuronach makaków występuje niemal 6000 synaps, a w 81 neuronach myszy uczeni naliczyli ponad 9700 synaps. Bliższe analizy wykazały, że neurony makaków posiadają od 2 do 5 razy mniej połączeń synaps niż neurony myszy.
To zaskakujące dlatego, że zarówno w neurologii jak i wśród ogółu społeczeństwa przyjęło się założenie, że im więcej połączeń między neuronami, tym wyższa inteligencja. Ta praca jasno pokazuje, że pomimo iż w mózgach naczelnych występuje większa liczba połączeń, to jeśli policzymy je nie ogólnie, a na poziomie pojedynczych neuronów, to naczelne mają mniej synaps. Jednocześnie wiemy, że neurony naczelnych są w stanie wykonywać działania, do których neurony myszy nie są zdolne. To zaś rodzi interesujące pytania, na przykład o konsekwencje budowy większych sieci neuronowych, takich jakie widzimy u naczelnych, wyjaśnia doktor Gregg Wildenberg z Argonne.
Zawsze sądziliśmy, że zagęszczenie synaps u naczelnych będzie podobne do zagęszczenia u gryzoni, a może nawet większe, gdyż z mózgu naczelnych jest więcej miejsca i więcej neuronów. Jednak w świetle tego zaskakującego odkrycia musimy się zastanowić, dlaczego neurony naczelnych tworzą mniej połączeń niż się spodziewaliśmy. Sądzimy, że może to być skutkiem ewolucji. Być może różnica wynika z energetycznego kosztu utrzymania mózgu. Stworzyliśmy więc model sztucznej sieci neuronowej i ją trenowaliśmy, ale nałożyliśmy na nią ograniczenia narzucane przez metabolizm w prawdziwych mózgach. Chcieliśmy zobaczyć, jak wpłynie to na ilość połączeń w tworzącej się sieci, mówi Matt Rosen, który pomagał w modelowaniu komputerowym.
Stworzony model uwzględniał dwa potencjalne koszty metaboliczne. Pierwszy to koszt pojedynczego sygnału elektrycznego przesyłanego między neuronami. Jest on bardzo duży. Drugi z uwzględnionych kosztów to koszt zbudowania i utrzymania synaps.
Dzięki takiemu modelowi odkryli, że im więcej neuronów w sieci, tym większy koszt metaboliczny działania takiej sieci i tym większe ograniczenia w tworzeniu i utrzymywaniu synaps, co skutkuje ich zmniejszoną gęstością.
Masa mózgu to jedynie około 2,5% masy ciała, jednak zużywa on około 20% całej energii organizmu. To bardzo kosztowny organ. Uważa się, że większość tej energii mózg przeznacza na synapsy, zarówno na komunikację między nimi, jak i na ich budowę i utrzymanie, dodaje Wildenberg.
Niezwykłe odkrycie pomoże w przyszłych badaniach. Myślę, że wszyscy neurobiolodzy chcieliby zrozumieć, co czyni nas ludźmi. Co odróżnia nas od innych naczelnych i od myszy. Konektomika badania anatomię układu nerwowego na poziomie poszczególnych połączeń. Wcześniej nie rozumieliśmy dobrze, gdzie na tym poziomie znajdują się różnice, które mogłyby wyjaśnić ewolucję różnych rodzajów mózgu. Każdy mózg zbudowany jest z neuronów i każdy neuron łączy się i komunikuje z innymi neuronami. Jak więc ewolucja stworzyła różne mózgi? Trzeba przebadać wiele różnych gatunków, by zacząć rozumieć, co tutaj się stało.
Ponadto lepsze zrozumienie zagęszczenia synaps, a zwłaszcza stosunku synaps pobudzających i hamujących, może pomóc w ustaleniu podstaw występowania takich chorób jak autyzm czy choroba Parkinsona. Jeśli zbadamy stosunek synaps pobudzających do hamujących u myszy i założymy, że jest on taki sam dla wszystkich gatunków, może to wpłynąć na rozumienie takich chorób. Znaleźliśmy różnice w stosunku synaps pobudzających i hamujących pomiędzy myszami a makakami. Teraz musimy się zastanowić, jakie ma to przełożenie na mysie modele chorób neurologicznych dotykających człowieka, dodaje Wildenberg.
Szczegółowy opis badań został opublikowany na łamach Cell Reports.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W żywych komórkach niezmienne wydaje się być tylko to, że stale się zmieniają. Naukowcom z IChF PAN udało się jednak wykazać, że istnieje w nich pewna wartość, która się nie zmienia. To lepkość. Te badania, choć podstawowe, mogą przyczynić się do powstania zupełnie nowych metod diagnostycznych i leczniczych.
Wydawałoby się, że w trakcie życia komórki, replikacji DNA, tworzenia białek, ciągłych zmian ich ilości, metabolitów itp. zachodzą w komórce tak drastyczne przemiany, że ta lepkość, związana ze stosunkiem ilości wody do ilości biologicznych cząsteczek w komórce, powinna się zmieniać.
Tak myślało zresztą wielu naukowców, w tym i sami autorzy pracy opublikowanej w Scientific Reports. Chcieliśmy zbadać, jak zmienia się lepkość cytoplazmy w rozmaitych ważnych momentach życia komórki, np. w trakcie podziału. To dlatego wynik, czyli stałość lepkości był dla nas zupełnym zaskoczeniem, opowiada dr Karina Kwapiszewska.
Samo sprawdzanie było procesem trudnym i żmudnym. Pełen cykl komórkowy trwa bowiem około 24 godzin, a choć można komórki zsynchronizować niczym tancerki w balecie, czyli sprawić, żeby wszystkie dzieliły się w miarę równocześnie, to nie da się namówić ich, żeby poczekały aż obserwator zrobi im zdjęcie. Będą nieprzerwanie tańczyć do wewnętrznej muzyki. Tu duży ukłon dla mojego kolegi, dr. Krzysztofa Szczepańskiego, który niejedną noc spędził w pracy robiąc pomiary za pomocą spektroskopii korelacji fluorescencji. Trzeba je robić co pół godziny w trakcie trwania całego cyklu komórkowego, a komórka przecież nie zaczeka do rana, żeby się podzielić, mówi dr Kwapiszewska. Dzięki niemu i jego wytrwałości mieliśmy zmapowaną lepkość w trakcie całego cyklu. I to w odpowiedniej liczbie powtórzeń. Tylko tak mogliśmy udowodnić, że to, co zmierzyliśmy to rzeczywisty parametr, a nie artefakt, dodaje.
Co więcej, naukowcy z IChF PAN odkryli, że lepkość pozostaje stała niezależnie od tego, czy to komórka płuc czy np. wątroby, choć to bardzo różne tkanki. A skoro jest stała, to znaczy, że do czegoś to musi być komórce potrzebne. Zwłaszcza, że wielkość samych komórek może się w obrębie jednej populacji (np. komórek skóry) zmieniać nawet dziesięciokrotnie i to nie ma dla nich aż takiego znaczenia, jak lepkość. Musi być więc mechanizm, który to reguluje.Lepkość ośrodka ma zapewne duże znaczenie dla procesów biochemicznych. Prosto mówiąc, im większa lepkość, tym trudniej cząsteczkom się spotkać, żeby doszło do reakcji. Komórka musi aktywnie regulować tę lepkość, bo inaczej reakcje w pewnych warunkach zachodziłyby wolniej a w innych szybciej. A gdyby któraś z reakcji za bardzo zwolniła –cały układ mógłby się posypać i komórka już nigdy nie wróciłaby do równowagi.
W jednej z wcześniejszych prac naszego zespołu (Sozański et. al., Phys Rev Lett 2015) wykazano, że wystarczy zwiększyć lepkość tylko 6 razy (to naprawdę niewiele), by zatrzymać w komórce cały transport aktywny, wyjaśnia dr Kwapiszewska. I tu dochodzimy do potencjalnych, choć na razie odległych, zastosowań odkrycia. Skoro wzrost lepkości hamuje procesy życiowe w komórce, to może da się to wykorzystać na przykład do tworzenia terapeutyków przeciwko komórkom nowotworowym. Takich, które wykorzystywałyby procesy fizyczne zamiast np. hamować replikację DNA. Podejrzewamy też, że część chorób neurodegeneracyjnych może być spowodowana lokalnym wzrostem lepkości w komórkach, mówi autorka. Jej wyrównanie mogłoby więc być sposobem na powstrzymanie uszkodzeń w chorobie Parkinsona czy Alzheimera i poprawić rokowanie chorych. Teraz badacze chcą się dowiedzieć, jak zmienia się lepkość w trakcie śmierci komórkowej i czy ta zmiana lepkości jest skutkiem, czy też przyczyną samego procesu
« powrót do artykułu -
przez KopalniaWiedzy.pl
Największe na świecie badania raf koralowych pozwoliły na określenie które rafy i w jaki sposób można uratować, informują naukowcy z WCS (Wildlife Conservation Society), wielu organizacji pozarządowych, agend rządowych oraz uniwersytetu. Dzięki nim opracowano trzy strategie, które mają zostać szybko wdrożone w celu ratowania raf.
W najnowszym numerze Nature Ecology and Evolution opublikowano wyniki badań prowadzonych przez ponad 80 naukowców na ponad 2500 rafach na oceanach Indyjskim i Spokojnym.
Dobra wiadomość jest taka, że wciąż istnieją dobrze funkcjonujące żywe rafy koralowe i nie jest za późno, by je ocalić. Możemy uratować dla przyszłych pokoleń ostatnie istniejące rafy, które zostały dotknięte zmianami klimatu. Jednak tam, gdzie doszło do dużej degeneracji raf, nadbrzeżne społeczności będą musiały znaleźć sobie w przyszłości inne źródło utrzymania, mówi główna autorka badań i szefowa prowadzonego przez WCS programu monitorowania raf, doktor Emily Darling.
Fakt, że można uratować część raf to dobra wiadomość. W regionie indopacyficznym znajduje się wielka różnorodność raf, niestety od ponad 20 lat w regionie tym coraz częściej dochodzi do incydentów masowego blaknięcia raf.
Dzięki badaniom udało się zidentyfikować trzy główne strategie zachowania raf koralowych. Pierwsza z nich polega na ich ochronie. Okazało się, że 17% badanych raf dobrze sobie radziło i były to rafy, których nie dotknęły niekorzystne zjawiska z lat 2014–2017 związane z El Niño. Znajdują się one na wodach przybrzeżnych 22 krajów, od Wschodniej Afryki po Azję Południowo-Wschodnią. Można je ocalić koordynując działania na skalę międzynarodową. Druga ze strategii polega na odradzaniu uszkodzonych raf. Mogłaby one objąć 54% badanych raf. To rafy, które jeszcze niedawno dobrze funkcjonowały, jednak dotknęło je masowe blaknięcie z lat 2014–2017. Strategia trzecia to zmiana stylu życia lokalnych społeczności. Aż 28% raf koralowych przestało funkcjonować, a ludzie, którzy są od nich uzależnieni muszą znaleźć inne źródła utrzymania.
Autorzy badań podkreślają, że niezwykle istotne jest prawidłowe zarządzanie rafami na szczeblu lokalnym, tworzenie obszarów chronionych i inne ograniczenia w ich eksploatacji, ale nie może to zastępować działań globalnych. Ocalenie raf będzie wymagało prowadzenia działań na szczeblu lokalnym i globalnym. Należy z jednej strony ograniczać zależność lokalnych społeczności od raf tak, by rafy były mniej eksploatowane, z drugiej zaś strony należy prowadzić działania zmierzające do utrzymania globalnego ocieplenie na poziomie poniżej 1,5 stopnia Celsjusza od okresu preindustrialnego", mówi doktor Tim McClanahan.
Utrzymanie się raf koralowych zależy w dużej mierze od ograniczenia emisji węgla do atmosfery. Jednak niezwykle ważne jest zidentyfikowanie tych raf, które zareagują bądź nie zareagują na działania na szczeblu lokalnym. Odpowiednie zarządzanie rafami pozwoli na opracowanie strategii pomocy ludziom, którzy są uzależnieni od raf, dodaje doktor Georgina Gurney.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.