Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Najbardziej oczywistym źródłem kolorów w przyrodzie wydają się być pigmenty. Okazuje się jednak, że niektóre ptaki, takie jak sójki i błękitniki, zawdzięczają barwę swoich piór nanostrukturom utworzonym przez "spienione" białka.

Odkrycia dokonał zespół złożony z inżynierów, fizyków oraz biologów ewolucyjnych pracujących na Uniwersytecie Yale. Z przeprowadzonych przez nich analiz wynika, że błękitne ubarwienie skrzydeł niektórych ptaków jest możliwe dzięki tzw. rozdziałowi fazowemu białek i wody. Zdaniem autorów odkrycie może ułatwić prace nad tworzeniem coraz doskonalszych nanostruktur o pożądanych właściwościach optycznych.

Proces rozdziału fazowego to nic innego jak rozdzielenie się mieszaniny dwóch lub więcej nierozpuszczających się w sobie substancji, które zostały uprzednio zmieszane ze sobą. Przykładem tego zjawiska może być np. uwalnianie się pęcherzyków CO2 z napoju lub rozwarstwianie się mieszaniny oleju z wodą.

W przypadku ptasich piór rozdział fazowy polega na ucieczce pęcherzyków wody z kompleksów białkowych znajdujących się wewnątrz komórek. Powstające wówczas puste przestrzenie są wypełniane powietrzem, zaś proteiny przyjmują formę piany lub gąbki. Ich unikalny rozkład przestrzenny jest niezbędny dla powstania błękitnej barwy piór.

Eksperci z Uniwersytetu Yale nie wykluczają, że to dopiero początek odkryć, które pozwolą na zastosowanie wniosków z obserwacji organizmów żywych w nanotechnologii. Zapewniają jednak, że już mają pomysł na uczczenie kolejnych sukcesów. Jak uważa dr Richard Prum, jeden z autorów badania, idealnie nada się do tego inny przykład praktycznego zastosowania rozdziału fazowego: szampan!

Share this post


Link to post
Share on other sites

Jedynym odkryciem w tym odkryciu może być fakt, że wcześniej uważano iż taki typ barwienia piór (strukturalny a nie pigmentowy) występuje u ptaków. Barwy strukturalne od dawna są znane u np motyli.

 

Swoją drogą, fajnie jakby udało się to wykorzystać do farb - tak żeby uzyskiwały odpowiednią strukturę (i dzięki temu barwę) po wyschnięciu. Z tego względu, że taka barwa strukturalna jest trwała, a pigmenty blakną..

Share this post


Link to post
Share on other sites

Nie jestem pewny, czy jest to takie znowu trwałe. Światło UV (przede wszystkim ono) ma zdolność niszczenia bardzo wielu struktur. Przecież jeżeli jest w stanie rozkładać pigmenty, to najprawdopodobniej jest też w stanie rozkładać związki wchodzące w skład takich nanostruktur (a już szczególnie podatne są białka, choć nie sądzę, by to one trafiły do zastosowań przemysłowych).

 

A, i jeszcze jedno: czy na pewno badania na motylach sugerowały rolę rozdziału fazowego? Bo mnie osobiście sam sposób powstawania tej struktury bardzo zaintrygował.

Share this post


Link to post
Share on other sites

Nie wiem na jakiej zasadzie powstaje barwa strukturalna u motyli, ale wiem że jest strukturalna (nie u wszystkich też z tego co się orientuję) - tj. jeśli zetrzesz niebieskie motyle skrzydło na proszek, to nie będzie to niebieski proszek, bo została zniszczona struktura która rozszczepiała/filtrowała światło dając w ten sposób barwę..

Share this post


Link to post
Share on other sites

Ogólnie powstają poprzez ugięcie, interferencję lub rozproszenie światła.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Przezroczyste wiaty przystanków autobusowych bywają śmiertelnym zagrożeniem dla ptaków. Liczbę kolizji ptaków z szybami może zmniejszać obecne tam graffiti, a nawet błoto czy kurz – wynika z obserwacji prowadzonych w południowej Polsce.
      Transparentne powierzchnie stanowią zagrożenie dla ptaków, które nie rozpoznają szkła jako bariery fizycznej. Jeśli nie jest ono prawidłowo oznakowane, wówczas stanowi dla ptaków śmiertelne zagrożenie. Ptaki, próbując przelecieć przez szklaną powierzchnię, uderzają w nią, co na ogół prowadzi do urazów czaszki i śmierci – zwracają uwagę naukowcy z Wrocławia, Krakowa i Białowieży po serii badań dotyczących kolizji ptaków z szybami wiat.
      Naukowcy ci zbadali częstość kolizji ptaków ze szklanymi wiatami na Dolnym Śląsku. Podczas niemal 2,5 tysiąca kontroli, prowadzonych na 81 przystankach co ok. 10 dni (w ciągu całego roku) notowali obecność charakterystycznych śladów na szybach, wskazujących na kolizję, a także martwych ptaków w pobliżu szyb.
      Stwierdzili 155 kolizji ptaków z szybami przystanków, znaleźli też kilkadziesiąt martwych ptaków różnych gatunków: kosów, rudzików, wróbli, bogatek, śpiewaków i innych – łącznie 17 gatunków. Na najbardziej „kolizyjnej” wiacie przystankowej odnotowano aż 18 kolizji w ciągu roku. Autorzy badań podkreślają, że liczba kolizji z pewnością była większa, niż 155 opisanych przypadków, gdyż nie każde uderzenie ptaka w szybę zostawia na niej ślad, świadczący o zdarzeniu.
      Te badania – jak czytamy w informacji prasowej przesłanej PAP – stanowią pierwszy na świecie kompleksowy opis znaczenia szklanych wiat przystanków komunikacji zbiorowej w kontekście kolizji z ptakami.
      Jedna z autorek badania, dr Ewa Zyśk-Gorczyńska z fundacji „Szklane Pułapki” oraz Instytutu Ochrony Przyrody PAN w Krakowie zwraca uwagę, że na przystankach w mieście liczba ptasich kolizji była przeciętnie mniejsza, niż na przystankach wiejskich. Przystanki na wsiach stoją bowiem w miejscach atrakcyjnych dla ptaków, wśród zieleni, tym samym stanowią barierę na trasach ich codziennych przelotów.
      Paradoksalnie większą liczbę uderzeń odnotowano na przystankach o mniejszej powierzchni przeszklonej. Wynika to prawdopodobnie z faktu – sugeruje dr Zyśk-Gorczyńska – że mniejsze przystanki znajdują się na obrzeżach miast, gdzie mniejsza jest liczba obsługiwanych przez nie pasażerów.
      Najciekawszym odkryciem było stwierdzenie, że przystanki, których szyby były pokryte graffiti – a także te z kurzem lub błotem – charakteryzowały się znacznie mniejszą liczbą kolizji z ptakami. Dzięki aktywności graficiarzy, którzy pokrywają farbami znaczną powierzchnię szyb, przystanki stały się dla ptaków lepiej widoczne – dodaje.
      Rozumiemy, że graffiti na przystankach jest na ogół nielegalne i nie namawiamy do aktów wandalizmu. Nasze badania jednak jasno pokazują, że z punktu widzenia ochrony ptaków warto jest zmienić sposób budowy wiat przystankowych, na przykład angażując różne grupy społeczne do działań artystycznych, lub rezygnując z całkowicie przezroczystych materiałów – podkreśliła dr Zyśk-Gorczyńska.
      Współautor badania, dr hab. Michał Żmihorski zwraca z kolei uwagę, że częstość kolizji zmieniała się wyraźnie w cyklu rocznym. Najwięcej kolizji miało miejsce późną wiosną i latem. Ten wzorzec dobrze koreluje z dużą liczebnością niedoświadczonych młodych ptaków opuszczających gniazda w tym okresie – zauważa.
      Ekstrapolacja naszych wyników na całą Polskę sugeruje, że rocznie w wyniku kolizji ze szklanymi wiatami przystanków może ginąć ok. miliona ptaków. Jest więc to bardzo poważne źródło ich śmiertelności – podkreślił dr Żmihorski.
      Artykuł został opublikowany w czasopiśmie „Landscape and Urban Planning”. Trzecim autorem badania był dr hab. Piotr Skórka z Instytutu Ochrony Przyrody PAN w Krakowie.
      Autorzy badania przypominają, że zagrażające ptakom duże szklane powierzchnie to również oszklone wieżowce, wysokie budynki, ekrany akustyczne, a także mniejsze elementy, np. szyby w oknach domów. Autorzy pracy podkreślają, że w ostatnich kilkunastu latach w Polsce i na świecie przybywa nowych elementów transparentnej infrastruktury. Szklane wiaty przystanków komunikacji zbiorowej zastępują nieestetyczne i niebezpieczne konstrukcje betonowe lub blaszane. Są one pozornie niewielkie, ale – z powodu swojej transparentności i obecności w różnych, często atrakcyjnych dla ptaków środowiskach – szklane wiaty mogą stanowić dla ptaków poważne zagrożenie.
      Wpływ szklanych wiat na populację ptaków może się wydawać niewielki. Szklane pułapki to jednak tylko jedno z zagrożeń, przez które populacja ptaków dramatycznie kurczy się, zwłaszcza w krajach rozwiniętych. Problemem jest intensyfikacja rolnictwa, masowe wylesianie i ekspansja miast, co prowadzi do ujednolicania krajobrazu i utraty siedlisk. Do tego dokłada się wiele mniejszych czynników, np. drapieżnictwo ze strony kotów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Płomykówki zwyczajne (Tyto alba) polują niemal bezszelestnie. Udaje im się to, bo lecą bardzo wolno, przez co ograniczają liczbę machnięć skrzydłami. Wolny lot to zasługa specjalnej budowy i kształtu skrzydeł.
      Dr Thomas Bachmann z Uniwersytetu Technicznego w Darmstadt zbadał upierzenie tych sów oraz wykonał obrazowanie 3D ich kośćca. Wyniki swoich badań przedstawił na dorocznej konferencji Stowarzyszenia Biologii Integracyjnej i Porównawczej w Charleston.
      Płomykówki polują przeważnie w ciemności, dlatego polegają na informacjach akustycznych. Muszą latać cicho, by słyszeć przemieszczające się nornice i nie zaalarmować ofiary, że znajdują się gdzieś w pobliżu.
      Jedną z najważniejszych cech skrzydeł T. alba jest duża krzywizna. Zapewnia ona lepszą nośność. Przepływ powietrza nad górną powierzchnią skrzydła ulega przyspieszeniu, przez co spada ciśnienie. Skrzydło jest zasysane w górę, w kierunku niższego ciśnienia.
      Za sprawą delikatnej powierzchni zredukowaniu ulega hałas związany z tarciem pióra o pióro. Poza tym całe ciało sowy jest pokryte grubą warstwą piór. Płomykówka ma ich o wiele więcej niż ptak podobnej wielkości. Gęsto rozmieszczone pióra działają jak panele akustyczne, które pochłaniają wszystkie niechciane dźwięki.
    • By KopalniaWiedzy.pl
      Podczas 219. spotkania Amerykańskiego Towarzystwa Astronomicznego poinformowano, jakiego koloru jest... Droga Mleczna. Jej barwa widziana z Ziemi nie odpowiada rzeczywistemu kolorowi.
      Jak poinformowali astronomowie, Droga Mleczna jest... biała, ale ma inny odcień niż możemy zaobserwować. Jej barwa jest taka, jak kolor czystego śniegu godzinę po wschodzie lub godzinę przed zachodem Słońca. Taki właśnie kolor dominuje w naszej galaktyce.
      Tego typu informacja nie jest tylko i wyłącznie ciekawostką. Dla astronomów jednym z najważniejszych parametrów jest rzeczywisty kolor galaktyk. Mówi on, ile lat liczą sobie gwiazdy, jak dawno powstały, czy nadal się formują czy też istnieją od miliardów lat - wyjaśnia Jeffrey Newman z University of Pittsburgh.
      Określenie koloru Drogi Mlecznej nie było łatwe. Po pierwsze, sami stanowimy jej część, zatem nie możemy obserwować jej z zewnątrz. Po drugie, większość widoku blokuje pył.
      Dlatego też Newman i jego student Tim Licquia posłużyli się metodą pośrednią. Znając masę Drogi Mlecznej i tempo formowania się gwiazd, skorzystali ze Sloan Digital Sky Survey, w którym znajdują się dane o milionie galaktyk. Wybrali z nich galaktyki o podobnych charakterystykach do Drogi Mlecznej i uśrednili wyniki. Najlepszy opis koloru, jaki mogę dać, to kolor, który zobaczymy, gdy godzinę po świcie lub godzinę przed zmierzchem będziemy patrzyli na świeży wiosenny śnieg o drobnych ziarnach. Właśnie takie spektrum światła mogą widzieć astronomowie obserwujący z zewnątrz Drogę Mleczną - dodał Newman. Temperatura koloru mieści się pomiędzy tradycyjną żarówką a słońcem w zenicie.
    • By KopalniaWiedzy.pl
      Gołębie mają podobne zdolności matematyczne co naczelne, twierdzą nowozelandzcy uczeni. Badania przeprowadzone na University of Otago dowiodły, że ptaki potrafią porównywać pary rysunków, na których znajduje się różna liczba przedmiotów i układać je w odpowiedniej kolejności. Gołębie radzą sobie nawet z dziewięcioma przedmiotami przedstawionymi na obrazku.
      Doktor Damian Scarf, główny autor badań, mówi, że dotychczas tego typu zdolności zauważono tylko u ludzi i małp. Nasze badania pokazują, że także gołębie są członkami tego ekskluzywnego klubu. Co ciekawe, ich zdolności są porównywalne ze zdolnościami małp - dodaje.
      Naukowcy początkowo ćwiczyli gołębie pokazując im 35 zestawów trzech rysunków. Na każdym z nich znajdował się jeden, dwa lub trzy obiekty o różnych rozmiarach, kształtach i kolorach. Gdy ptaki ułożyły obrazki w porządku rosnącym, otrzymywały nagrodę.
      Później uczeni postanowili sprawdzić, czy gołębie potrafią wyciągnąć wnioski z nauki. Pokazywano im pary rysunków, a na każdym z nich było od 1 do 9 obiektów. Eksperyment wykazał, że i u ptaków występuje „efekt dystansu“, zaobserwowany podczas słynnych amerykańskich badań z 1998 roku, w których zadanie postawiono przed rezusami. Polega on a tym, że im większa różnica w liczbie przedmiotów na rysunkach, tym szybciej i dokładniej zwierzęta potrafią ułożyć je w odpowiedniej kolejności.
      Oczywiście od naszych zdolności liczenia dzieli je długa droga, jednak badania te dowodzą, że zwierzęta o strukturze mózgu odmiennej od naszej są w stanie przeprowadzać złożone operacje myślowe. Jeszcze do niedawna sądzono, że są do nich zdolni tylko ludzie. To kolejny dowód, że gołębie należą do tych ptaków, które wykazują zadziwiające zdolności umysłowe, zadając kłam powiedzeniu o ‚ptasim móżdżku’ - stwierdził Scarf.
      W najbliższej przyszłości uczony chce badać aktywność mózgu gołębi w czasie, gdy ptaki będą rozwiązywały złożone zadania obliczeniowe.
      Scarf chce też poddać badaniom nowozelandzkie papugi kea, o których mówi się, że mają inteligencję sześcioletniego dziecka.
    • By KopalniaWiedzy.pl
      Szympansy prawdopodobnie łączą dźwięki z kolorami. Wysokim dźwiękom przypisują jaśniejsze kolory, a niższym - ciemniejsze. To wskazuje, że nie tylko ludzie doświadczają zjawiska synestezji.
      Vera Ludwig z Charité - Universitätsmedizin Berlin, która prowadziła badania, mówi, że niemal wszyscy ludzie łączą wysokie tony z jasnymi kolorami, a niskie z ciemnymi. Zdaniem uczonej zdolność do takich wyobrażeń jest łagodną formą synestezji.
      Ludwig chciała się dowiedzieć, czy ludzie uczą się takiego a nie innego przyporządkowania dźwięków barwom od innych ludzi czy też jest to zdolność wrodzona. Dlatego rozpoczęła badania na szympansach.
      Wraz z kolegami z Kyoto University badała 6 szympansów w wieku 8-32 lat. Zwierzętom pokazano czarne oraz białe kwadraty na ekranie komputera i nauczono je, że jeśli wybiorą kwadrat takiego koloru, jak kwadrat wzorcowy, otrzymają nagrodę. Podczas eksperymentów małpy słyszały też wysokie i niskie dźwięki. Okazało się, że gdy odgrywano wysoki ton wtedy, gdy należało wybrać biały kwadrat, a niski gdy prawidłowym wyborem był czarny, odsetek prawidłowych wyborów wynosił 93%. Gdy natomiast białemu kwadratowi przyporządkowano niskie dźwięki, a czarnemu wysokie, odsetek ten spadł do około 90%. Wyniki uzyskane przez małpy porównano z wynikami grupy 33 ludzi. Homo sapiens zrobili jednak zbyt mało błędów, by można było wykazać wpływ dźwięku na wybór, jednak uczeni zauważyli, że gdy przy kolorach odgrywano właściwe dźwięki, ludzie szybciej dokonywali wyboru.
      Na podstawie eksperymentu Ludwig wnioskuje, że język nie jest potrzebny do odczuwania synestezji i sądzi, że zdolność tę dziedziczymy po wspólnym przodku.
      Inni naukowcy ostrożnie podchodzą do badań Ludwig. Edwart Hubbard z Vanderbilt University przypomina, że u ludzi synestezja dotyczy też słów, cyfr i innych zjawisk. Przyznaje jednak, że badania są interesujące i mogą wskazywać na istnienie pewnych rodzajów synestezji u innych gatunków.
      Z kolei Danko Nikolic z Instytut Maksa Plancka wątpi, czy badania wykazały istnienie synestezji u małp, zwracając uwagę, że zbyt wiele zjawisk jest określanych mianem synestezji.
      Sama Ludwig przyznaje, że udowodnienie istnienia synestezji u zwierząt jest bardzo trudną sprawą, gdyż u samych ludzi występuje ona bardzo rzadko i jest niezwykle subiektywnym zjawiskiem.
      Tymczasem jej japońscy współpracownicy szukają innych jej przykładów u szympansów. Przypominają, że np. ludzie kojarzą duże przedmioty z niskimi dźwiękami.
×
×
  • Create New...