Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Zbyt duże ilości testosteronu zabijają komórki mózgu. Odkrycie to może pomóc w wyjaśnieniu, czemu nadużywanie steroidów wywołuje zmiany w zachowaniu, takie jak wzrost agresji czy skłonności samobójcze.

Testy laboratoryjne wykazały, że niewielkie ilości męskiego hormonu płciowego oddziałują korzystnie na neurony, jednak większe jego stężenie powoduje samozniszczenie komórek w procesie przypominającym patologiczne zmiany np. w chorobie Alzheimera.

Prowadząca badania Barbara Ehrlich z Yale University zauważa, że niedobrze jest, gdy testosteronu jest za mało lub za dużo, z najkorzystniejszą sytuacją mamy do czynienia w przypadku średnich stężeń.

Testosteron jest kluczowy dla rozwoju, różnicowania i wzrostu komórek. Wytwarzają go zarówno kobiety, jak i mężczyźni, ale dla tych ostatnich typowe jest ok. 20-krotnie wyższe jego stężenie.

Możliwe jest "przedawkowanie" testosteronu lub steroidów, które są w organizmie przekształcane w testosteron. Wcześniejsze badania wykazały, że nadmiar tego hormonu powoduje zmiany behawioralne.

Potrafimy wykazać, że kiedy masz wysoki poziom steroidów, masz także wysokie stężenie testosteronu, a to z kolei może uszkodzić komórki nerwowe. Wiemy również, że "tracąc" mózg, tracisz jego funkcje — dowodzi Ehrlich.

Zespół Amerykanów przeprowadził podobne próby z estrogenem. Byliśmy zaskoczeni, ale wygląda na to, że estrogen wykazuje w stosunku do neuronów działanie ochronne. W obecności estrogenu odnotowuje się mniej przypadków śmierci komórek [w wyniku tzw. apoptozy — przyp. red.].

Na łamach Journal of Biological Chemistry Ehrlich i jej zespół przestrzegają przed zażywaniem steroidów. Może to pomóc w zbudowaniu masy mięśniowej, wykazuje jednak długoterminowe negatywne oddziaływanie na funkcjonowanie mózgu.

Apoptoza jest ważna dla mózgu, ponieważ musi on eliminować niektóre komórki. Ale jeśli ma ona miejsce zbyt często, traci się zbyt wiele neuronów, a to oznacza kłopoty. Podobny proces występuje w chorobach Alzheimera, Huntingtona i in. Nasze wyniki sugerują, że reakcje organizmu na podniesiony poziom testosteronu można porównywać z chorobami patofizjologicznymi.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Zaledwie trzy zastrzyki z nanocząstek wystarczyły, by u myszy z chorobą Alzheimera doszło do zaskakującej pozytywnej poprawy. Naukowcy z Uniwersytetu w Syczuanie, Katalońskiego Instytutu Bioinżynierii (IBEC) i University College London zastosowali podejście polegające na wzięciu na cel naczyń krwionośnych, a nie neuronów czy innych komórek mózgu. Ze szczegółami ich badań można zapoznać się na łamach Signal Transduction and Targeted Therapy.
      Zastosowane leczenie przywróciło normalne funkcjonowanie bariery krew-mózg, co skutkowało odwróceniem skutków alzheimera w mysim modelu choroby. Bariera ta chroni mózg przed kontaktem ze szkodliwymi substancjami i mikroorganizmami. W przebiegu choroby Alzheimera taką główną szkodliwą substancją są białka beta-amyloidu (Aβ), tworzące blaszki amyloidowe, uniemożliwiające prawidłowe funkcjonowanie neuronom.
      Junyang Chen, badacz ze Szpitala Wschodniochińskiego na Uniwersytecie w Syczuanie, a obecnie doktorant na University College London poinformował, że już po 1. wstrzyknięciu nanocząstek zaobserwowano spadek ilości Aβ w mózgu o 50–60 procent. Jednak najbardziej uderzający był wpływ leczenia na myszy. Zwierzęta były genetycznie zmodyfikowane tak, by rozwinęła się u nich choroba Alzheimera. Podczas jednego z eksperymentów 12-miesięczna mysz (odpowiednik 60-letniego człowieka) otrzymała nanocząstki, a po 6 miesiącach zbadano, jak się zachowuje. Okazało się, że 18-miesięczne zwierzę (odpowiedni 90-letniego człowieka) funkcjonowała tak, jak jej zdrowe rówieśniczki.
      Długoterminowy wpływ naszej terapii bierze się z odtworzenia sieci naczyń krwionośnych mózgu. Uważamy, że działa to kaskadowo: gdy w mózgu akumuluje się toksyczny Aβ, choroba postępuje. Gdy jednak sieć naczyń krwionośnych zostanie przywrócona do prawidłowego stanu, dochodzi do wyczyszczenia mózgu z Aβ i innych szkodliwych substancji, dzięki czemu cały układ odzyskuje równowagę, mówi profesor Giuseppe Battaglia z IBEC.
      Jednym z głównych problemów w chorobie Alzheimera jest zaburzenie prawidłowego funkcjonowania mechanizmów oczyszczających mózg ze szkodliwych substancji. Rolę strażnika utrzymującego odpowiedni poziom Aβ w mózgu pełni proteina LRP1. Rozpoznaje ona beta-amyloid, łączy się z nim i przemieszcza przez barierę krew-mózg do krwioobiegu, gdzie całość zostaje usunięta. Jednak gdy LRP1 połączy się z Aβ zbyt ściśle lub zbyt luźno, transport zostaje zaburzony i beta-amyloid nie jest usuwany.
      Przygotowane przez naukowców nanocząstki same działają jak leki, a nie jak nośniki substancji leczniczych. Mają precyzyjnie kontrolowane rozmiary i wyposażone są w określoną liczbę ligand, przez co w specyficzny sposób wchodzą w interakcje z receptorami komórkowymi. Pozwala to na przywrócenie prawidłowego funkcjonowania układu krwionośnego oraz oczyszczenie mózgu z Aβ.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zaledwie trzy zastrzyki z nanocząstek wystarczyły, by u myszy z chorobą Alzheimera doszło do zaskakującej pozytywnej poprawy. Naukowcy z Uniwersytetu w Syczuanie, Katalońskiego Instytutu Bioinżynierii (IBEC) i University College London zastosowali podejście polegające na wzięciu na cel naczyń krwionośnych, a nie neuronów czy innych komórek mózgu. Ze szczegółami ich badań można zapoznać się na łamach Signal Transduction and Targeted Therapy.
      Zastosowane leczenie przywróciło normalne funkcjonowanie bariery krew-mózg, co skutkowało odwróceniem skutków alzheimera w mysim modelu choroby. Bariera ta chroni mózg przed kontaktem ze szkodliwymi substancjami i mikroorganizmami. W przebiegu choroby Alzheimera taką główną szkodliwą substancją są białka beta-amyloidu (Aβ), tworzące blaszki amyloidowe, uniemożliwiające prawidłowe funkcjonowanie neuronom.
      Junyang Chen, badacz ze Szpitala Wschodniochińskiego na Uniwersytecie w Syczuanie, a obecnie doktorant na University College London poinformował, że już po 1. wstrzyknięciu nanocząstek zaobserwowano spadek ilości Aβ w mózgu o 50–60 procent. Jednak najbardziej uderzający był wpływ leczenia na myszy. Zwierzęta były genetycznie zmodyfikowane tak, by rozwinęła się u nich choroba Alzheimera. Podczas jednego z eksperymentów 12-miesięczna mysz (odpowiednik 60-letniego człowieka) otrzymała nanocząstki, a po 6 miesiącach zbadano, jak się zachowuje. Okazało się, że 18-miesięczne zwierzę (odpowiedni 90-letniego człowieka) funkcjonowała tak, jak jej zdrowe rówieśniczki.
      Długoterminowy wpływ naszej terapii bierze się z odtworzenia sieci naczyń krwionośnych mózgu. Uważamy, że działa to kaskadowo: gdy w mózgu akumuluje się toksyczny Aβ, choroba postępuje. Gdy jednak sieć naczyń krwionośnych zostanie przywrócona do prawidłowego stanu, dochodzi do wyczyszczenia mózgu z Aβ i innych szkodliwych substancji, dzięki czemu cały układ odzyskuje równowagę, mówi profesor Giuseppe Battaglia z IBEC.
      Jednym z głównych problemów w chorobie Alzheimera jest zaburzenie prawidłowego funkcjonowania mechanizmów oczyszczających mózg ze szkodliwych substancji. Rolę strażnika utrzymującego odpowiedni poziom Aβ w mózgu pełni proteina LRP1. Rozpoznaje ona beta-amyloid, łączy się z nim i przemieszcza przez barierę krew-mózg do krwioobiegu, gdzie całość zostaje usunięta. Jednak gdy LRP1 połączy się z Aβ zbyt ściśle lub zbyt luźno, transport zostaje zaburzony i beta-amyloid nie jest usuwany.
      Przygotowane przez naukowców nanocząstki same działają jak leki, a nie jak nośniki substancji leczniczych. Mają precyzyjnie kontrolowane rozmiary i wyposażone są w określoną liczbę ligand, przez co w specyficzny sposób wchodzą w interakcje z receptorami komórkowymi. Pozwala to na przywrócenie prawidłowego funkcjonowania układu krwionośnego oraz oczyszczenie mózgu z Aβ.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Uniwersytetów w Bath i Bristolu nie tylko wykazali, że ich technologia Fastball EEG jest w stanie wykryć wczesne oznaki choroby Alzheimera na całe lata przed czasem, w którym możliwa jest diagnoza kliniczna, ale również, że kilkuminutowy test można łatwo przeprowadzić w domu pacjenta. To zaś daje możliwość wykonywania szeroko zakrojonych badań przesiewowych.
      Podczas krótkiego, zaledwie 3-minutowego badania za pomocą Fastball EEG, rejestrowana jest aktywność mózgu w czasie, czy uczestnik badania ogląda obrazki. W ten sposób można zidentyfikować osoby z łagodnym zaburzeniem poznawczym (MCI). To stan przejściowy pomiędzy naturalnymi skutkami starzenia się, który może prowadzić do rozwoju alzheimera.
      Obecnie dysponujemy dobrymi lekami spowalniającymi postępy choroby Alzheimera. Jednak ich skuteczność zależy od wczesnego podania. Dlatego niezwykle ważne są metody pozwalające na jak najwcześniejsze zidentyfikowanie pierwszych sygnałów mogących prowadzić do tej choroby. Obecnie w wielu przypadkach chorzy otrzymują diagnozę na tyle późno, że stosowanie najbardziej efektywnych form leczenia staje się nieskuteczne.
      Doktor George Stothart z Wydziału Psychologii Uniwersytetu w Bath mówi, że obecnie stosowane narzędzia diagnostyczne wyłapują chorobę Alzheimera na 10 do 20 lat po tym, jak zaczyna się ona rozwijać. Szybki pasywny test Fastball może to zmienić, dostarczając obiektywną diagnozę znacznie wcześniej, stwierdza uczony. Nowa technika działa wyłącznie dzięki rejestrowaniu fal mózgowych w reakcji na oglądane obrazki. Nie wymaga od osoby badanej przestrzegania jakichś instrukcji, czy przypominania sobie czegoś. Dzięki temu test jest bardziej obiektywny i łatwiejszy do przeprowadzenia, niż tradycyjne testy pamięciowe.
      Badania omówiono na łamach Brain Communications.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ksenon to gaz szlachetny, który obecnie używany jest w medycynie jako anestetyk oraz substancja ochronna podczas leczenia urazów mózgu. W Science Translational Medicine ukazał się artykuł, którego autorzy omawiają zastosowanie ksenonu w leczeniu choroby Alzheimera. Uczeni z Mass General Brigham i Wydziału Medycyny Washington University zauważyli, że wdychanie ksenonu zmniejsza stan zapalny układu nerwowego, atrofię mózgu i chroni neurony myszy z alzheimerem. Wyniki badań są tak obiecujące, że wkrótce rozpocznie się 1. faza badań klinicznych na zdrowych ochotnikach.
      Okazuje się, że samo wdychanie tego obojętnego gazu wywiera silny ochronny wpływ na układ nerwowy. Jedna z głównych przeszkód na polu badań nad chorobą Alzheimera polega na olbrzymiej trudności w zaprojektowaniu leków, które przekraczałyby barierę krew-mózg. A ksenon to potrafi, mówi doktor Oleg Butovsky Brigham and Women's Hospital.
      Niezwykle ekscytujący jest fakt, że w obu zwierzęcych modelach różnych aspektów choroby Alzheimera, zarówno w modelu patologii płytek amyloidowych, jak i w modelu patologii splątków tau, ksenon miał korzystny wpływ, dodaje doktor David M. Holtzman.
      Obecnie nauka do końca nie rozumie powodów rozwoju choroby Alzheimera. Jej cechą charakterystyczną jest gromadzenie się mózgu nieprawidłowych białek, w tym splątków tau i płytek amyloidowych, które niszczą komórki nerwowe, prowadząc do uszkodzeń i w końcu do śmierci. Komórki mikrogleju, które są najważniejszą linią obrony mózgu, ulegają rozregulowaniu w przebiegu alzheimera. Nie posiadamy też obecnie żadnego lekarstwa na tę chorobę.
      Podczas najnowszych, prowadzonych na myszach, badaniach, naukowcy zauważyli, że wdychanie ksenonu zmniejszyło stopień atrofii mózgu i stan zapalny u myszy z alzheimerem. Poprawiło się też funkcjonowanie zwierząt. Ksenon okazał się środkiem, który może poprawić działanie mikrogleju i zmniejszyć zniszczenia spowodowane chorobą. Dlatego też w ciągu najbliższych miesięcy z Brigham and Women's Hospital maja rozpocząć się badania kliniczne na zdrowych ochotnikach. Mają one na celu zbadanie bezpieczeństwa terapii i określenie właściwych dawek ksenonu. Jednocześnie prowadzone będą badania nad mechanizmami, przez które ksenon działa na mózg oraz nad potencjalnym zastosowaniem tego gazu w innych chorobach, jak stwardnienie rozsiane, choroba Lou Gehriga czy choroby oczu związane z utratą neuronów. Uczeni będą szukać też sposobów na bardziej efektywne podawanie ksenonu oraz jego potencjalny recykling.
      Jeśli badania kliniczne wypadną dobrze, może to otworzyć nowe drogi pomocy pacjentom z chorobami neurologicznymi, mówi doktor Howard Weiner, który będzie głównym naukowcem odpowiedzialnym za badania kliniczne.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W XIX wieku Arnold Adolph Berthold wykastrował koguta, by sprawdzić, dlaczego koguty pieją, a kury tego nie robią. Po kastracji zwierzę przestało piać. Wówczas nie było wiadomo, która substancja w jądrach odpowiada za typowe dla samców zachowanie. Teraz już wiemy, jest nim testosteron. Mimo iż nazywany jest „męskim hormonem”, występuje też u samic. Jednym ze sposobów, w jaki testosteron działa na organizm, jest łączenie się z receptorem androgenowym.
      Naukowcy z Uniwersytetu Technicznego w Monachium i Instytutu Inteligencji Biologicznej im. Maxa Plancka jako pierwsi stworzyli kury domowe pozbawione receptora androgenowego, dzięki czemu mogli sprawdzić, jak androgenowe szlaki sygnałowe wpływają na wygląd i zachowanie obu płci tego gatunku.
      Testosteron, po połączeniu się z receptorem androgenowym, włącza produkcję pewnych protein. Testosteron może być też metabolizowany w estrogen – „hormon żeński” – i łączy się wówczas z innym receptorem. Powstaje więc pytanie, jaką rolę odgrywają androgenowe szlaki sygnałowe.
      Benjamin Schusser i Manfred Gahr stworzyli genetycznie zmodyfikowane kury domowe, pozbawione receptora androgenowego. Uczeni wybrali kurę domową, gdyż to inteligentne zwierzę społeczne, które wykazuje zachowania typowe dla płci, takie jak pianie kogutów.
      Jak się spodziewano, koguty pozbawione receptora androgenowego były bezpłodne, a niektóre z zewnętrznych cech płciowych – przydatki głowowe (grzebień i korale) – były niedorozwinięte. Zdziwiło nas, że cechy typowe dla samców zostały tylko częściowo utracone. To oznacza, że wygląd zewnętrzny koguta nie jest determinowany wyłącznie przez androgenowe szlaki sygnałowe, zauważa jedna z głównych autorek badań, Mekhla Rudra.
      Co interesujące, brak receptora androgenowego podobnie wpłynął na samice. Kury również były bezpłodne, a typowe ozdoby głowy były znacznie mniejsze, niż normalnie. Młode kury i koguty były niemal nie do odróżnienia. Inną interesującą rzecz zauważono, gdy zwierzęta były starsze. Dorosłe samice wytwarzały testosteron, ale bez receptora androgenowego nie przechodziły owulacji i nie składały jaj, co pokazuje, że tworzenie się jaja i jego znoszenie jest zależne od androgenu.
      Wyniki badań wskazują, że testosteron odgrywa ważną rolę u obu płci. Opisywanie go więc jako hormonu typowo męskiego jest uproszczeniem. Oddziaływanie hormonów na organizmy żywe jest bardzo złożone i nie do końca je rozumiemy. Powyższe badania dostarczają też dodatkowych informacji na temat rozwoju płciowego u ptaków.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...