Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Nvidia chce mieć własne CPU x86

Recommended Posts

Plotki o ewentualnym zainteresowaniu Nvidii rynkiem procesorów x86 pojawiają się od pewnego czasu, ale tym razem doczekały się oficjalnego potwierdzenia. Podczas Morgan Stanley Technology Conference wiceprezes Nvidii, Michael Hara, został zapytany o to, czy jego firma ma zamiar zadebiutować na rynku CPU. Hara stwierdził: pytanie nie brzmi 'czy', ale 'kiedy'.

Jednocześnie powiedział że CPU produkcji Nvidii nie byłby układem nadającym się do wszystkich zastosowań. Może to być kość przeznaczona do niewielkich platform SoC (system-on-chip). Firma chciałaby zatem mieć ofertę na rynek niewielkich przenośnych urządzeń i nie ma zamiaru rywalizować o rynek wydajnych pecetów.

Wiceprezes Nvidii dodał, że firmowy procesor x86 może pojawić się w ciągu 2-3 lat. Teraz nie jest dobry moment na jego debiut, gdyż na rynku zagościł niedawno intelowski Atom i platforma Ion Nvidii.

Warto wspomnieć, że Nvidia produkuje już CPU. To platforma Tegra ze zintegrowanym rdzeniem ARM.
Jeśli Nvidia ma zamiar wyprodukować CPU x86 będzie musiała kupić licencję od Intela.

Share this post


Link to post
Share on other sites

Intel raczej nie będzie zachwycony konkurencją dla atom-a, niewiem czy nie taniej wyjdzie kupić via (takowe stosowną licencję już posiada, ma też pewne doświadczenie w produkcji słabych ale energooszczędnych procków x86)

Share this post


Link to post
Share on other sites

Jeśli VIA jest do kupienia za sensowną kasę, to takie wyjście byłoby wręcz rewelacyjne. Pamiętam jeszcze opisy ich CPU - ciekawe rozwiązania mieli. Niewielkie stwarzają zagrożenie dla Intela czy AMD na tym segmencie rynku, ale ze wsparciem NVidii mogłoby się "dziać" :)

Share this post


Link to post
Share on other sites

VIA aktywnie wspiera ruch Open Source, jeśli dobrze pamiętam, to zaczynają ekperymentować z Open Hardware. Oby to czasem nie zostało zmarnowane. ;)

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.


  • Similar Content

    • By KopalniaWiedzy.pl
      Na MIT powstał nowoczesny mikroprocesor z tranzystorami z nanorurek węglowych. Urządzenie można wyprodukować za pomocą technik używanych obecnie przez przemysł półprzewodnikowy, co ma olbrzymie znaczenie dla ewentualnego wdrożenia.
      Nanorurki węglowe są od dawna przedmiotem zainteresowań, gdyż dają nadzieję na zbudowanie kolejnej generacji komputerów po tym, gdy układów krzemowych nie będzie można już miniaturyzować. Tranzystory polowe z nanorurek węglowych (CNFET) mogą mieć bardzo obiecujące właściwości. Z dotychczasowych badań wynika, że powinny być one około 10-krotnie bardziej efektywne pod względem zużycia energii i pozwolić na przeprowadzanie obliczeń ze znacznie większą prędkością. Problem jednak w tym, że przy masowej produkcji w nanorurkach pojawia się tak wiele defektów, że nie można ich w praktyce wykorzystać.
      Naukowcy z MIT opracowali nową technikę, która znacząco zmniejsza liczbę defektów i daje pełną kontrolę nad produkcję CNFET. Co ważne, technika ta wykorzystuje procesy już używane w przemyśle półprzewodnikowym. Dzięki niej na MIT wyprodukowano 16-bitowy mikroprocesor składający się z 14 000 CNFET, który jest w stanie wykonywać te same obliczenia co tradycyjny procesor.
      Nowy procesor oparto na architekturze RISC-V. Testy wykazały, że jest on zdolny do wykonania pełnego zestawu instrukcji dla tej technologii.
      To, jak dotychczas, najbardziej zaawansowany chip wykonany w nowym procesie nanotechnologicznym, który daje nadzieję na wysoką wydajność i efektywność energetyczną, mówi współautor badań, profesor Max M. Shulaker. Krzem ma swoje ograniczenia. Jeśli chcemy coraz szybszych komputerów, to węglowe nanorurki są najbardziej obiecującym materiałem. Nasze badania pokazują zupełnie nowy sposób budowy układów scalonych z węglowymi nanorurkami.
      Shulaker i jego zespół od dawna pracują nad układami scalonymi z CNFET. Przed sześcioma laty byli w stanie zaprezentować procesor złożony ze 178 CNFET, który mógł pracować na pojedynczym bicie danych. Od tamtego czasu uczeni skupili się na rozwiązaniu trzech kluczowych problemów: defektach materiałowych, niedociągnięciach produkcyjnych oraz problemach funkcjonalnych.
      Największym problemem było uzyskanie nanorurek odpowiedniej jakości. Żeby CNFET działał bez zakłóceń, musi bez problemów przełączać się pomiędzy stanem 0 i 1, podobnie jak tradycyjny tranzystor. Jednak zawsze podczas produkcji powstanie jakaś część nanorurek, które będą wykazywały właściwości metalu, a nie półprzewodnika. Takie nanorurki czynią CNFET całkowicie nieprzydatnym. Zaawansowane układy scalone, by być odpornymi na obecność wadliwych nanorurek i móc szybko wykonywać zaawansowane obliczenia, musiałyby korzystać z nanorurek o czystości sięgającej 99,999999%. Obecnie jest to niemożliwe do osiągnięcia.
      Naukowcy z MIT opracowali technikę nazwaną DREAM (designing resilency against metallic CNT), która tak pozycjonuje metaliczne CNFET, że nie zakłócają one obliczeń. Dzięki temu zmniejszyli wymagania dotyczące czystości nanorurek aż o cztery rzędy wielkości. To zaś oznacza, że do wyprodukowania w pełni sprawnego układu potrzebują nanorurek o czystości sięgającej 99,99%, a to jest obecnie możliwe.
      Uczeni przeanalizowali różne kombinacje bramek logicznych i zauważyli, że metaliczne nanorurki węglowe nie wpływają na nie w ten sam sposób. Okazało się, że pojedyncza metaliczna nanorurki w bramce A może uniemożliwić komunikację pomiędzy nią, a bramką B, ale już liczne metaliczne nanorurki w bramce B nie wpływają negatywnie na jej możliwości komunikacji z żadną bramką. Przeprowadzili więc symulacje, by odnaleźć wszystkie możliwe kombinacje bramek, które byłyby odporne na obecność wadliwych nanorurek. Podczas projektowania układu scalonego brano pod uwagę jedynie te kombinacje. Dzięki technice DREAM możemy po prostu kupić komercyjne dostępne nanorurki, umieścić je na plastrze i stworzyć układ scalony, nie potrzebujemy żadnych specjalnych zabiegów, mówi Shulaker.
      Produkcja CNFET rozpoczyna się od nałożenia znajdujących się w roztworze nanorurek na podłoże z predefiniowanym architekturą układu. Jednak nie do uniknięcia jest sytuacja, w której część nanorurek pozbija się w grupy, tworząc rodzaj dużych cząstek zanieczyszczających układ scalony. Poradzono sobie z tym problemem tworząc technikę RINSE (removal of incubated nanotubes through selective exfoliation). Na podłoże nakłada się wcześniej związek chemiczny, który ułatwia nanorurkom przyczepianie się do niego. Następnie, już po nałożeniu nanorurek, całość pokrywana jest polimerem i zanurzana w specjalnym rozpuszczalniku. Rozpuszczalnik zmywa polimer, a ten zabiera ze sobą pozbijane w grupy nanorurki. Te zaś nanorurki, które nie zgrupowały się z innymi, pozostają przyczepione do podłoża. Technika ta aż 250-kronie zmniejsza zagęszczenie zbitek nanorurek w porównaniu z alternatywnymi metodami ich usuwania.
      Poradzono sobie też z ostatnim problemem, czyli wytworzeniem tranzystorów typu N i typu P. Zwykle produkcja tych tranzystorów z węglowych nanorurek kończyła się uzyskaniem urządzeń o bardzo różniącej się wydajności. Problem rozwiązano za pomocą nowej techniki o nazwie MIXED (metal interface engineering crossed with electrostatic doping), dzięki której możliwe jest precyzyjna optymalizacja procesorów do wymaganych zadań. Technika ta polega na dołączeniu do każdego tranzystora, w zależności czy ma być on P czy N, odpowiedniego metalu, platyny lub tytanu. Następnie tranzystory są pokrywane tlenkiem, co pozwala na ich dostosowanie do zadań, jakie będą spełniały. Można więc osobno dostroić je do pracy w zastosowaniach w wysoko wydajnych serwerach, a osobno do energooszczędnych implantów medycznych.
      Obecnie, w ramach programu prowadzonego przez DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych), wspomniane techniki produkcji układów scalonych z węglowych nanorurek wdrażane są w fabrycznych liniach produkcyjnych. W tej chwili nikt nie potrafi powiedzieć, kiedy w sklepach pojawią się pierwsze procesory z CNFET. Shulaker mówi, że może się to stać już w ciągu najbliższych pięciu lat. Sądzimy, że teraz to już nie jest pytanie czy, ale pytanie kiedy, mówi uczony.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Firma Adapteva ogłosiła, że wkrótce zacznie produkować próbną wersję 64-rdzeniowego procesora wykonanego w technologii 28 nanometrów. Układ E64G4 korzysta z technologii Epiphany, która została stworzona pod kątem takich zastosowań jak rozpoznawanie mowy czy przetwarzanie grafiki.
      Adapteva specjalizuje się w tworzeniu aplikacji na rynek finansowy, wojskowy i inżynieryjny, teraz zaś chce zaistnieć na rynku urządzeń przenośnych.
      W firmę zainwestowano zaledwie 2 miliony dolarów, teraz przygotowuje ona swój czwarty układ scalony i wkrótce przestanie przynosić straty. Andreas Olofsson, założyciel i szef Adaptevy mówi, że mimo iż same maski litograficzne kosztują miliony dolarów, to przedsiębiorstwo może działać, gdyż wybrało model multiproject wafer (MPW), w którym koszty masek podzielone są pomiędzy klientów firmy. Ponadto Adapteva działa na rynkach, na których produkuje się niewielkie serie drogich układów. Pojedynczy procesor może kosztować nawet 1000 dolarów.
      Od lata 2011, kiedy to Adapteva wyprodukowała swój pierwszy układ scalony, 16-rdzeniowy procesor wykonany w technologii 65 nanometrów, wpływy przedsiębiorstwa wyniosły milion dolarów.
      Obecnie ma powstać czwarta generacja układu Epiphany. Kość będzie składała się z 64 rdzeni RISC, z których każdy zostanie wyposażony w 32 kilobajty pamięci podręcznej. Całość zmieści się na powierzchni 8,2 mm2 i będzie, jak twierdzi Adapteva, najbardziej efektywnym energetycznie układem scalonym. Jego wydajność ma wynieść 70 GFlops/wat.
      Kość taktowana będzie zegarem o częstotliwości do 700 MHz.
      Ambicje firmy jednak się na tym nie kończą. Architektura Epiphany ma umożliwić produkcję procesora składającego się z 4096 rdzeni.
      Układy na zamówienie Adaptevy są produkowane w fabrykach Globalfoundries.
    • By KopalniaWiedzy.pl
      HP ma zamiar stworzyć do 2017 roku 256-rdzeniowy procesor Corona, którego rdzenie będą komunikowały się ze sobą za pomocą łączy optycznych. Taka kość miałaby wykonywać 10 biliardów operacji zmiennoprzecinkowych na sekundę, zatem wydajność pięciu układów dorównywałaby wydajności współczesnych superkomputerów. Poszczególne rdzenie wymieniałyby dane z prędkością 20 terabitów na sekundę, a komunikacja między procesorem a pamięcią odbywałaby się z prędkością 10 Tb/s. Co więcej Corona zużywałaby znacznie mniej energii niż współczesne układy, dzięki czemu superkomputerom łatwiej będzie pokonać barierę eksaflopsa (1018 operacji zmiennoprzecinkowych na sekundę).
      Obecnie istnieją dwa główne problemy, które znacznie utrudniają zwiększanie wydajności układów scalonych w dotychczasowym tempie. Im więcej rdzeni w procesorze, tym trudniej jest koordynować ich pracę i komunikować je ze sobą. Bardzo trudno jest uzyskać układ posiadający więcej niż 16 rdzeni, który pracowałby jak procesor równoległy. Drugi poważny problem to olbrzymi pobór mocy, który ma miejsce podczas przesyłania danych od i do układów pamięci.
      Obie te przeszkody można rozwiązać za pomocą zintegrowanej fotoniki, czyli laserów i łączy optycznych wbudowanych w układ scalony. Przykładem takiej kości może być zaprezentowany właśnie przez IBM-a Holey Optochip. Nad podobnymi rozwiązaniami pracują też Intel (projekt Runnemede), Nvidia (Echelon), Sandia National Laboratory (X-calibur) czy MIT (Angstrom).
      Najważniejszą jednak rolę odgrywa zintegrowana fotonika w projekcie Corona. Problem w tym, że część potrzebnej technologii wciąż jeszcze nie została opracowana. Jednak co się powoli zmienia. Od dłuższego już czasu informujemy o postępach na tym polu. Przez ostatnie lata wiele firm pracowało nad poszczególnymi podzespołami, teraz zaczęto łączyć je w układy. To jak przejście od tranzystora do układu scalonego - stwierdził Marco Fiorentino z HP Labs.
      HP ma zamiar w każdy rdzeń Corony wbudować laser, który będzie wysyłał informacje do wszystkich innych rdzeni. Jak obliczają specjaliści wykorzystanie elektroniki do stworzenia 10-terabitowego kanału przesyłu danych pomiędzy CPU a pamięcią wymagałoby 160 watów mocy. Zdaniem HP, jeśli zastąpimy elektronikę zintegrowaną fotoniką, pobór mocy spadnie do 6,4 wata.
      Zmniejszenie poboru mocy to dla superkomputerów niezwykle istotna sprawa. Najpotężniejsza maszyna na świecie, japoński K Computer, potrzebuje obecnie do pracy 12,6 MW. Jego wydajność wynosi 10,5 PFlops, trzeba by ją zatem zwiększyć niemal 100-krotnie by osiągnąć barierę eksaflopsa.
      Zintegrowana fotonika przyczyni się również do obniżenia poboru mocy przez serwery i urządzenia telekomunikacyjne, co odgrywa olbrzymią rolę w internecie, którym przesyłamy coraz większą ilość danych. Z czasem lasery i łącza optyczne mogą trafić też do urządzeń przenośnych, pozwalający na ich dłuższą pracę bez potrzeby ładowania baterii. Również, co niezwykle istotne, w fotonice nie występuje problem interferencji elektromagnetycznej, zatem jej stosowanie np. w samochodach czy samolotach będzie bezpieczniejsze niż stosowanie urządzeń elektronicznych.
      Problemem jest też stworzenie miniaturowych laserów, które można będzie budować za pomocą dostępnych technologii. Jako, że z krzemu nie można generować światła, specjaliści badają inne materiały, przede wszystkim arsenek galu i fosforek indu. Ostatnio MIT zainteresował się też germanem.
      Trwają również intensywne prace nad rozwojem technologii TSV (through silicon vias). Pozwoli się ona pozbyć szyn, za pomocą których łączą się ze sobą poszczególne układy. Szyny stanowią dla danych wąskie gardło i zużywają sporo energii. TSV pozwala układać na sobie układy scalone (powstają w ten sposób układy 3D) i łączyć je kablami poprowadzonymi wewnątrz takiego stosu układów, co zwiększa przepustowość, a jednocześnie zmniejsza zużycie prądu i pozwala na zaoszczędzenie miejsca na płycie głównej.
      W projekcie Corona HP chce połączyć obie technologie - 3D i zintegrowaną fotonikę. Dzięki temu ma powstać 256-rdzeniowy procesor zbudowany z 64-rdzeniowych klastrów. Całość zostanie wykonana w procesie 16 nanometrów i będzie połączona łączami optycznymi.
    • By KopalniaWiedzy.pl
      Liczne źródła informują, że Sony pracuje nad konsolą PlayStation 4 i nie ma zamiaru wykorzystywać w niej ani procesora Cell ani żadnego układu na nim opartego. Nie wiadomo, jaki procesor miałby znaleźć się w przyszłej konsoli. Plotka głosi, że japoński koncern porzuci układy graficzne Nvidii i będzie korzystał z rozwiązań AMD.
      Cell jest dzieckiem Kena Kutaragi, twórcy PlayStation, i był produkowany wspólnie przez Sony, Toshibę i IBM-a. Kutaragi opuścił jednak Sony, więc firma postanowiła zrezygnować z tego układu. Informacja taka powinna ucieszyć developerów, którzy skarżyli się, że Cell jest trudny w oprogramowaniu.
      Z procesorem tym wiązano niegdyś olbrzymie nadzieje, spodziewano się, że trafi do serwerów i urządzeń medycznych. Ambitne plany nigdy nie zostały zrealizowane, a sam procesor w dużej mierze przyczynił się do niepowodzenia PlayStation 3. Konsola, której poprzednie wersje były największymi przebojami w swojej kategorii, sprzedaje się gorzej niż urządzenia konkurencji.
      Przed wszystkimi twórcami konsoli, nie tylko przed Sony, stoi trudne wyzwanie. Twórcy najnowszej generacji wykorzystywanego w wielu grach silnika Unreal twierdzą bowiem, że najnowsze konsole będą musiały być co najmniej 10-krotnie bardziej wydajne niż PS3 czy Xbox 360.
    • By KopalniaWiedzy.pl
      Rozmawiamy z Adamem Kiepulem, absolwentem Wydziału Elektroniki Politechniki Wrocławskiej (1996), który od 1997 pracuje w Dolinie Krzemowej jako inżynier aplikacji procesorów i rdzeni MIPS, kolejno w Philips Semiconductors, NEC Electronics oraz PMC-Sierra.
      Na czym polega Pańska praca?
      Inżynier aplikacji musi odnaleźć się w różnych rolach. Podstawowym obowiązkiem jest udzielanie wsparcia technicznego klientom, począwszy od odpowiedzi na proste pytania o architekturę czy cechy użytkowe procesora aż po rozwiązywanie złożonych problemów technicznych. Na przykład jeśli system klienta nie pracuje prawidłowo to inżynier aplikacji jest na „pierwszej linii frontu” - współpracuje z deweloperami po stronie klienta, aby zidentyfikować sekwencję instrukcji i innych zdarzeń, która z takiego czy innego powodu nie daje spodziewanych rezultatów. Następnie, jeśli okaże się, że wina nie leży po stronie programu czy problemu z płytą lub innym komponentem, tylko po stronie procesora, inżynier aplikacji współpracuje z projektantami poszczególnych części procesora, aby znaleźć błąd i opracować jego „obejście”. Do obowiązków należy także opracowywanie specjalnych przykładowych programów specyficznych dla danego procesora i jego architektury, testowanie i ocena narzędzi (kompilatorów, debuggerów itp.), a czasem również ręczna optymalizacja kodu klienta w celu uzyskania lepszej wydajności na danym procesorze. Do tego dochodzi tworzenie wszelkiego rodzaju dokumentacji jak instrukcje użytkownika, noty aplikacyjne itp., opracowywanie i przeprowadzanie szkoleń technicznych dla klientów, pomoc i towarzyszenie specjalistom od marketingu czy sprzedaży w spotkaniach z klientami, reprezentowanie firmy na specjalistycznych targach, seminariach itd.
      Jak wygląda droga z polskiej politechniki do Krzemowej Doliny? Czego się trzeba uczyć, by pracować w takiej firmie jak Pańska?
      Wydaje mi się, że zawsze najważniejsze jest, aby mieć jasno postawiony cel i wytrwale pracować nad jego realizacją. Przydatny jest także łut szczęścia. To brzmi na pewno jak banał, ale w wielu przypadkach naprawdę istotne jest to, aby znaleźć się w odpowiednim miejscu w odpowiednim czasie i do tego jeszcze być na to w pełni przygotowanym.
      Techniką, a elektroniką i komputerami w szczególności, interesowałem się od dzieciństwa. Mając chyba 13 lat przeczytałem w jednym z pierwszych numerów magazynu „Bajtek” historię o Jobsie i Wozniaku czyli o powstaniu firmy Apple. Pamiętam, że ten właśnie artykuł oraz nieco późniejszy - o Dolinie Krzemowej i jej „klimatach”, jak się to dziś mówi - były dla mnie niczym swego rodzaju olśnienie i stały się wyraźnymi impulsami, które spowodowały, że nagle zrozumiałem, iż kiedyś po prostu muszę „tam” być. Wtedy znaczyło to znacznie więcej niż dziś. Były to ostatnie lata PRL-u i dla większości ludzi takie postanowienie nastolatka, który nie skończył jeszcze 8-klasowej wówczas podstawówki, wydawało się zwyczajną dziecinną mrzonką. Jednak wszystko co wtedy i później robiłem, było kolejnymi logicznymi krokami przybliżającymi mnie do tego celu. Pilnie uczyłem się matematyki, fizyki oraz języka angielskiego, a jednocześnie pochłaniałem literaturę i magazyny z dziedziny elektroniki i informatyki. Archaiczny już dziś język BASIC poznałem jeszcze koło 6. klasy dzięki kursom Rolanda Wacławka w „Młodym Techniku”. Pod koniec podstawówki znałem już język maszynowy procesora Z80 (serca m.in. komputera Sinclair ZX Spectrum) jak również podstawy techniki cyfrowej i systemów mikroprocesorowych. W liceum nauczyłem się jeszcze języka maszynowego procesorów 6502 / 6510, na których oparte były popularne wówczas 8-bitowe komputery domowe Atari i Commodore. Już wtedy potrafiłem „od zera” napisać złożony program w assemblerze, wykorzystujący rejestry sprzętu, przerwania itp.
      Taka wiedza i doświadczenie są niezwykle istotne i ogromnie procentują podczas studiów, jak również później – już w karierze zawodowej. Wydaje mi się, ze ogromną zaletą, ale też jednocześnie swego rodzaju słabością polskiego systemu kształcenia technicznego na poziomie wyższym jest ogromny nacisk na podstawy teoretyczne. Na studiach zapoznajemy się z teoriami, które najwybitniejsze umysły opracowały np. 80 lat temu, bez których dziś po prostu nie byłoby elektroniki i informatyki. To z jednej strony wymusza i kształtuje pewną dyscyplinę intelektualną, sposób myślenia oraz zdobywania wiedzy. Z drugiej jednak strony na polskich politechnikach, w porównaniu z zachodnimi, poświęca się znacznie mniej czasu na stronę praktyczną i faktyczne przygotowanie do zawodu inżyniera. Być może teraz jest nieco inaczej, ale tak było w połowie lat 90., kiedy ja kończyłem studia.
      Jeśli miałbym doradzać dzisiejszym uczniom i studentom, którzy chcieliby przeżyć podobną przygodę za granicą, to zachęcałbym do dwóch rzeczy: język(i) oraz praktyczna wiedza związana z zawodem i daną specjalnością. Jeśli pracuje się w kraju anglosaskim to oczywiście wystarczy angielski, jednak jeśli myśli się o pracy np. we Francji, Szwajcarii czy Norwegii to równie ważna jest znajomość miejscowego języka. Jeśli ktoś chciałby projektować procesory, to na pewno musi opanować nie tylko teoretyczne podstawy elektroniki i techniki cyfrowej, ale także języki opisu układów jak VHDL i Verilog, jak również języki programowania, zwłaszcza skryptowe jak np. PERL.
      Jeszcze jedna uwaga: nie chcę nikogo zniechęcać, ale obawiam się, że dziś dostać się do Doliny Krzemowej jest dużo trudniej niż w r. 1997, kiedy ja tu przyjechałem. Mój przypadek jest dobrą ilustracją tego, że niezbędne są sprzyjające okoliczności oraz szczęście. W 1996 skończyłem Elektronikę na Politechnice Wrocławskiej. Moją specjalizacją były oczywiście systemy mikroprocesorowe. Jeszcze pod koniec studiów wysłałem do oddziału Philips Semiconductors w Zurychu podanie o przyjęcie na praktykę i, ku memu ogromnemu zaskoczeniu, zostałem przyjęty, mimo, że liczba miejsc jest bardzo ograniczona, a liczba podań jest naprawdę ogromna. Jako praktykant przez 4 miesiące zajmowałem się testowaniem układów scalonych, które sterują wyświetlaczami LCD w telefonach komórkowych. Miałem okazję wykazać się tam wiedzą zdobytą podczas studiów, ale myślałem wciąż o prawdziwych procesorach, a kiedy dowiedziałem się, że oddział w Dolinie Krzemowej poszukuje inżyniera do grupy projektującej rdzenie MIPS, bez wahania wysłałem swoje CV. Po dwóch rozmowach kwalifikacyjnych przez telefon, dzięki opinii przełożonych z Zurychu otrzymałem propozycję pracy w tej grupie jako inżynier aplikacji. Był to moment przełomowy. Jednak należy pamiętać, że były to inne czasy – szczyt prosperity w Dolinie Krzemowej, kiedy panował prawdziwy głód wysoko wykwalifikowanych pracowników i sprowadzano ich z całego świata, w oparciu o specjalną wizę H1B, sponsorowaną przez pracodawcę, który musiał udowodnić, iż nie jest w stanie znaleźć odpowiednio wykwalifikowanego kandydata na dane stanowisko wśród obywateli USA. Od tamtej pory jednak wiele się zmieniło. Wielki upadek „bańki” tzw. dot-com’ów, a także przeniesienie licznych stanowisk pracy do Indii i Chin zaowocowały masowymi zwolnieniami. Wielu fachowców wróciło do swoich krajów, a liczni Amerykanie o wysokich kwalifikacjach nie mogą obecnie znaleźć pracy. Obawiam się, że w tej sytuacji moja droga, tzn. poprzez wizę H1B, dziś jest praktycznie niemożliwa. Jednak wciąż można się tu dostać. Jeden z możliwych sposobów to studia na amerykańskiej uczelni. To jednak wciąż nie gwarantuje, iż później będzie można tu legalnie pozostać i podjąć pracę. Dlatego lepszym rozwiązaniem wydaje mi się podjęcie pracy w Polsce lub innym kraju Unii, a następnie przeniesienie do oddziału amerykańskiego. Nie muszę też chyba wspominać, że zdolni naukowcy pracujący na polskich uczelniach mają dodatkowe atuty i możliwości współpracy z firmami z Doliny.
×
×
  • Create New...