Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Wybór mieszkania to trudna decyzja, od której może zależeć komfort życia. Wiedzą o tym nawet gryzonie, które, jak się okazuje, poświęcają poszukiwaniu lokum znacznie więcej uwagi, niż się dotychczas wydawało. 

O żyjących dziko gryzoniach zwykło sie uważać, że zamieszkają w każdym miejscu, które spełnia minimalne wymagania dotyczące m.in. bezpieczeństwa i łatwości zdobywania pożywienia. Wyniki doświadczenia przeprowadzonego przez dwie badaczki z Uniwersytetu Kalifornijskiego, Karen E. Mabry oraz Judy A. Stamps, sugerują jednak, że zwierzęta te są znacznie bardziej wybredne, niż przypuszczano.

Obiektem obserwacji były gryzonie z gatunku Peromyscus boylii, należącego do rodziny chomikowatych. Te niepozorne zwierzęta, bardzo pospolite w Ameryce Północnej, krótko po urodzeniu wyruszają ze swojego gniazda w poszukiwaniu miejsca, w którym mogą rozpocząć życie "na własny rachunek". Badaczki z Kalifornii zaopatrzyły trzydzieści jeden okazów tych sympatycznych gryzoni w nadajniki radiowe i analizowały ich zachowania oraz trasy ich wypraw na terenie rezerwatu należącego do Uniwersytetu Kalifornijskiego.

Zebrane informacje sugerują, że przedstawiciele P. boylii nie zadowalają się pierwszym napotkanym miejscem nadającym się do spoczynku. Zamiast tego, spędzają noce na wędrówkach w poszukiwaniu siedliska idealnego. Gdy odnajdą kilka miejsc spełniających wymagania, zaczynają krążyć pomiędzy nimi tak długo, aż przekonają się ostatecznie, które z nich jest najlepsze. Dopiero wtedy określone lokum zostaje zajęte. Co ciekawe, bardziej wybrednymi poszukiwaczami są samce, lecz nie ustalono dokładnie, jaki może być cel takiego zachowania.

To pierwszy raz, gdy zaobserwowano u gryzoni tak wnikliwe poszukiwania schronienia. Dotychczas uważano, że wybór miejsca bytowania nie jest dla tych zwierząt aż tak czasochłonny, zaś jedynym gatunkiem, który odwiedza kilka potencjalnych siedlisk przed zajęciem jednego z nich, jest, oczywiście, człowiek. 

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Chlorofil z zielonych warzyw zapewnia ochronę przed nowotworami, kiedy sprawdza się jego działanie przy średnich stężeniach substancji rakotwórczych, jakie występują przeważnie w środowisku. Okazuje się jednak, że przy bardzo wysokiej ekspozycji barwnik zaczyna zwiększać liczbę powstających guzów (Food and Chemical Toxicology).
      W eksperymencie naukowców z Uniwersytetu Stanowego Oregonu (OSU) wzięło udział 12.360 pstrągów tęczowych (Oncorhynchus mykiss). Jak wiele wcześniejszych badań, nasze studium pokazuje, że do pewnego momentu chlorofil zmniejsza liczbę guzów, ale przy wysokich dawkach sprawia, że problem staje się gorszy. To podważa wiarygodność podejścia stosowanego często podczas badania związków kancerogennych - podkreśla prof. Tammie McQuistan.
      Akademicy z OSU wyspecjalizowali się ostatnio w badaniach na pstrągach. Dają one podobne rezultaty jak testy na gryzoniach, a są tańsze, bo można wdrażać o wiele niższe dawki różnych substancji. Poza tym w eksperymencie zamiast kilkudziesięciu albo co najwyżej kilkuset  osobników można spokojnie uwzględnić kilka, jeśli nie kilkanaście tysięcy.
      W jednej z części badania pstrągi wystawiano na działanie umiarkowanych stężeń znanego karcinogenu, podając im jednocześnie chlorofil. Zmniejszyło to liczbę guzów wątroby o 29-64%, a liczbę guzów żołądka o 24-45%. Kiedy jednak później zastosowano nierealistycznie wysokie stężenie substancji rakotwórczej, chlorofil zwiększył liczbę guzków. Specjaliści z OSU zaznaczają, że zwykłe studium na stosunkowo niewielkiej grupie zwierząt, którym podawano by wysokie dawki związków rakotwórczych, skłoniłoby do wysnucia wniosku, że chlorofil może zwiększać ryzyko wystąpienia guzów u ludzi. Dowody z ich studium pokazują, że to nie do końca prawda.
      Mechanizm działania chlorofilu jest prosty. Wiąże się z karcinogenami w przewodzie pokarmowym, a potem taki kompleks jest po prostu wydalany z organizmu. Centralne założenie wielu innych eksperymentów jest takie, że wyniki uzyskane przy wysokich dawkach karcinogenu odnoszą się także do niższych dawek. Wbrew zwykłym założeniom, rezultaty związane z głównymi badanymi narządami są ściśle zależne od dozy. Wyniki uzyskane przy bardzo wysokich stężeniach i obserwowana przy nich reakcja nowotworowa mogą zatem nie mieć żadnego odniesienia do ludzi.
    • By KopalniaWiedzy.pl
      Zęby rekinów stale rosną. Gdy stare się zużyją, ku przodowi przesuwają się nowe (naukowcy porównują to do taśmy dostarczającej zęby). U ludzi i większości innych ssaków występują tylko dwa komplety zębów - mleczne i stałe. Okazuje się jednak, że istnieje kilka wyjątków od tej reguły - m.in. afrykański gryzoń Heliophobius argenteocinereus.
      Stuart Landry już w 1957 r. zauważył, że zwierzęta te mają więcej zębów trzonowych niż przeciętny gryzoń, ale nie zbadał głębiej tej kwestii. Dopiero po wielu latach zajął się nią Helder Gomes Rodrigues z Uniwersytetu w Lyonie.
      W ramach studium Rodrigues badał szkielety ok. 55 osobników. Odkrył, że zęby trzonowe wydają się przesuwać z tyłu szczęk ku przodowi. Po drodze ulegają też wyniesieniu. Do czasu gdy dotrą do pierwszego rzędu zębów, zupełnie się zużywają i ulegają wchłonięciu przez kość.
      Poza H. argenteocinereus, umiejętnością wytwarzania zastępczych zębów dysponują jeszcze 3 gatunki manatów i skalniak karłowaty. Wygląda jednak, że wyłącznie u gryzonia wykształcił się mechanizm jednoczesnego ruchu trzonowców ku przodowi i górze.
      O ile u manatów i skalniaka zęby są zastępowane w wyniku zużycia przez twarde składniki diety, o tyle H. argenteocinereus żywi się miękkimi bulwami i innymi równie delikatnymi częściami roślin. Rodrigues uważa więc, że wyjaśnienie tego zjawiska musi mieć coś wspólnego z kopaniem (H. argenteocinereus należy do rodziny kretoszczurów). Zwierzę kopie przede wszystkim przednimi siekaczami. W tym czasie trzonowce rozdrabniają napotykane obiekty, a powstały z nich pył jest połykany. Teorię Francuza trzeba będzie jednak dopiero potwierdzić.
    • By KopalniaWiedzy.pl
      Pewne nietoperze z Borneo mieszkają w dzbankach roślin owadożernych. Nepenthes rafflesiana elongata korzystają z pozostawionych przez lokatorów odchodów, a latające ssaki z gatunku Kerivoula hardwickii skutecznie ukrywają się przed niechcianym towarzystwem.
      Wcześniej widywano wiewióreczniki korzystające z dzbanków roślin owadożernych jak z toalety, jednak po raz pierwszy udokumentowano, że jakieś ssaki w nich mieszkają. Rośliny owadożerne z rodzaju Nepenthes żyją na ubogich glebach, dlatego polują na owady, by pozyskać z nich odpowiednią do wzrostu ilość azotu. N. rafflesiana elongata występuje na bagnach torfowiskowych oraz w lasach wrzosowiskowych Borneo i ma imponującej wielkości dzbanki. Niestety, w ramach wcześniejszych badań wykazano, że chwyta do 7 razy mniej owadów niż inne gatunki Nepenthes na wyspie.
      Dr Ulmar Grafe i jego zespół dociekali, jak w takim razie rośliny te radzą sobie z niedoborami azotu. W ten sposób zauważono, że dzbanecznik wszedł w relację mutualistyczną z nietoperzem. Jak napisano w artykule opublikowanym w piśmie Biology Letters, K. hardwickii lokują się powyżej płynu trawiennego. I tak dzbanecznik zdobywa nawóz, a ssak korzysta z bezpiecznego schronienia, wolnego od wysysających krew pasożytów zewnętrznych, które często gromadzą się w gniazdowiskach nietoperzy – tłumaczy Grafe.
    • By KopalniaWiedzy.pl
      Niedźwiedzie epoki lodowcowej wyginęły, ponieważ ludzie pozajmowali zamieszkiwane przez nie jaskinie (Molecular Biology and Evolution).
      Ostatnie studium, w ramach którego badano mitochondrialne DNA z 17 nowych próbek skamieniałości niedźwiedzi jaskiniowych (Ursus spelaeus) i porównywano je z materiałem genetycznym współczesnego niedźwiedzia brunatnego (Ursus arctos), wykazało, że populacja tych zwierząt zaczęła się zmniejszać ok. 50 tys. lat temu. Było to raczej spowodowane ekspansją ludzi niż zmianą klimatu. Jaskinie miały dla tych zwierząt kluczowe znaczenie, ponieważ na czas zimy zapadały tam w hibernację. Dr Mathias Stiller z Instytutu Antropologii Ewolucyjnej Maxa Plancka wyjaśnia, że przez ludzi niedźwiedzie występujące w Europie w plejstocenie straciły zwyczajnie domy...
      Spadek zróżnicowania genetycznego niedźwiedzia jaskiniowego rozpoczął się ok. 50 tys. lat temu, o wiele wcześniej niż dotąd sugerowano, w czasie, gdy nie zachodziła większa zmiana klimatu. Pokrywało się to zaś z początkiem ekspansji naszego gatunku – opowiada Aurora Grandal-D'Anglade z University of Coruña.
      Po zakończeniu datowania radiowęglowego międzynarodowy zespół ujawnił, że ok. 35 tys. lat temu U. spelaeus nie był już powszechny w Europie Środkowej. Można to przypisać ekspansji ludzi i zrodzeniu się wskutek tego międzygatunkowej konkurencji o terytorium i schronienie. Specjalistka zwraca uwagę, że mimo wielu skamielin typowych ofiar niedźwiedzi jaskiniowych znaleziono niewiele śladów świadczących o upolowaniu.
      Międzynarodowy zespół naukowców badał mitochondrialne DNA ze skamielin z osadów syberyjskich, ukraińskich, środkowoeuropejskich oraz pochodzących z Półwyspu Iberyjskiego, a zwłaszcza z Galicji. Następnie przeprowadzono analizę prawdopodobieństwa subiektywnego poszczególnych scenariuszy wydarzeń. Poza tym akademicy dokonali porównań ze współczesnymi niedźwiedziami brunatnymi oraz ich skamielinami. By wykazać, czemu U. spelaeus wyginął, a U. arctos nie, trzeba było się przyjrzeć 59 sekwencjom genetycznym niedźwiedzia jaskiniowego i 40 niedźwiedzia brunatnego, datowanym w przypadku tego pierwszego na okres sprzed 60-24 tys. lat, a w przypadku drugiego od 80 tys. lat temu do teraz.
      Zubożenie środowiska podczas maksimum ostatniego glacjału było przysłowiowym gwoździem do trumny dla niedźwiedzia jaskiniowego. Niedźwiedź brunatny nie podzielił jego smutnego losu, bo hibernując, nie polegał w tym samym stopniu na jaskiniowym habitacie. Tak naprawdę jego skamieliny nie są zbyt licznie reprezentowane w osadach jaskiniowych – wyjaśnia Grandal-D'Anglade. Ostateczne wyginięcie niedźwiedzia jaskiniowego zbiega się w czasie z ostatnim ochłodzeniem klimatu podczas plejstocenu (miało to miejsce 25-18 tys. lat temu).
    • By KopalniaWiedzy.pl
      Myszy informują swoich pobratymców o tym, co warto zjeść, za pomocą zapachu w wydychanym powietrzu. Naukowcy rozszyfrowali właśnie, jak na poziomie molekularnym działa wspominany mechanizm.
      Okazuje się, że dwusiarczek węgla (CS2), który znajduje się w powietrzu wydychanym przez większość ssaków, stymuluje grupę komórek w mysim nosie. Wysyłają one sygnał do specjalnych struktur mózgowych, kojarzących woń z bezpiecznym pokarmem. Mysz myśli: skoro mój znajomy właśnie zjadł coś o tym zapachu i nadal oddycha, a więc żyje, pokarm musi być bezpieczny – tłumaczy obrazowo współautor studium Steven Munger ze Szkoły Medycznej University of Maryland.
      Eksperymenty amerykańskiego zespołu ujawniły, że komórki GC-D, które rozpoznają hormony peptydowe uroguanilinę i guanilinę, reagują też na CS2 w wydychanym przez gryzonie powietrzu. Mysz wyczuwająca wydobywającą się z pyska drugiego zwierzęcia woń cynamonu będzie wolała coś pachnącego tą samą przyprawą niż inne przekąski. Co ciekawe, współpracownicy Mungera zauważyli, że "czynnikiem przekonującym" wcale nie musi być druga mysz, ba, nawet żywe stworzenie. Nasączone dwusiarczkiem węgla i zapachem jedzenia waciki sprawdzały się bowiem tak samo dobrze. Myszy pozbawione komórek GC-D nie potrafią zinterpretować chemicznej wiadomości i nie powielają wyborów żywieniowych swoich pobratymców.
      Emily Liman z Uniwersytetu Południowej Kalifornii podkreśla, że wreszcie udało się stwierdzić, na jakiej podstawie zwierzęta nocne przekonują się, że można coś zjeść bez obaw. Naczelne wykorzystują do tego wzrok, po ciemku lepiej jednak posłużyć się sygnałem zapachowym. U większości Primates gen komórek GC-D nie działa, ale występuje on choćby u psów. Opisany mechanizm jest tak silny, że gdy mysz, która zjadła truciznę, wyczuje od innego gryzonia zapach trutki, wróci, by zjeść jeszcze trochę. Bennett Galef z McMaster University ujawnia, że zmieszanie dwusiarczku węgla z trutką na szczury wciąga w pułapkę 4-krotnie więcej zwierząt.
×
×
  • Create New...