Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Spocony (jak) robot
dodany przez
KopalniaWiedzy.pl, w Ciekawostki
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Kamienie nerkowe to jedna z najbardziej rozpowszechnionych chorób układu moczowego. Cierpi na nie około 12% populacji. Obecnie usuwa się je za pomocą leków lub podczas zabiegów chirurgicznych. Jednak metody te są bardzo uciążliwe dla osób, które nie tolerują leków, albo też mają problem z wciąż nawracającymi kamieniami. Międzynarodowy zespół z Kanady, Hiszpanii i Niemiec pracuje nad niewielkimi robotami, których celem będzie rozpuszczanie kamieni nerkowych.
Nowa minimalnie inwazyjna technika została już z powodzeniem przetestowana na wydrukowanym trójwymiarowym modelu nerki. Roboty mają trafić w pobliże kamienia i rozpuścić go do tego stopnia, że w ciągu kilku dni samodzielnie opuści układ moczowy.
Testowane roboty mają około 1 centymetra długości, są wykonane z hydrożelu i zawierają mikromagnesy. Po wprowadzeniu do cewki moczowej, robotami można sterować za pomocą pola magnetycznego i umieścić je w pobliżu kamienia. Roboty zostały wyposażone w ureazę. To enzym, który odpowiada za rozkład mocznika na amoniak i dwutlenek węgla. Ureaza uwalnia się z hydrożelu i zwiększa zasadowość moczu, dzięki czemu znakomicie przyspiesza rozpuszczanie kamieni moczanowych i cystynowych, które w ciągu kilku dni opuszczają organizm. Dodatkową zaletą tej techniki jest fakt, że dzięki magnesom roboty są dobrze widoczne na USG, zatem przebieg leczenia można łatwo kontrolować. Roboty mają wymiary 1x1x12 mm, więc bez problemu powinny zmieścić się w każdym zakamarku układu moczowego i dotrzeć wszędzie tam, gdzie będą potrzebne.
Nie od dzisiaj wiadomo, że proces rozpuszczania kamieni nerkowych znacząco przyspiesza przy pH > 6, a ideałem jest osiągnięcie pH 7,0–7,2. Leki stosowane w leczeniu kamieni nerkowych mają za zadanie zwiększyć alkaliczność moczu. Jest to jednak proces długotrwały, a leki muszą być ciągle przyjmowane. Autorzy badań, wykorzystując swoje roboty, zwiększyli zasadowość sztucznego moczu z pH 6 do pH 7 w ciągu zaledwie godziny, a pH 9 osiągnęli w ciągu 24 godzin.
Oczywiście nie ma potrzeby, a nawet nie powinno się, zmieniać odczynu moczu na aż tak bardzo zasadowy. Nadmierna alkalizacja, pH > 7,5, sprzyja bowiem powstawaniu kamieni fosforanowych i struwitowych. Potwierdziły to zresztą badania. Najlepsze wyniki w redukcji masy kamienia – o 30% w ciągu 5 dni – osiągnięto przy pH 7.
Z wynikami badań można zapoznać się na stronie Advanced Healthcare Materials.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Roboty przeszły długą drogę. Od maszyn wykonujących serię z góry zaprogramowanych ruchów, po urządzenia uczące się, analizujące środowisko i samodzielnie podejmujące decyzje. O ile więc potrafią rozwijać swoją część logiczną, to element fizyczny pozostaje niezmienny. Robot to zamknięty system. Nie jest zdolny do naprawy czy dostosowania się do środowiska. Tymczasem prawdziwa autonomia robotów oznacza, że muszą one nie tylko samodzielnie myśleć, ale być w stanie podtrzymać swoje istnienie, mówi Philippe Martin Wyder. Tak jak systemy biologiczne pobierają zasoby ze środowiska i włączają je w swoje organizmy, nasze roboty rosną, dostosowują się i reperują korzystając z zasobów otoczenia lub części innych robotów, dodaje uczony.
Wyder stoi na czele grupy naukowców z Columbia University, która opublikowała na łamach Science Advances artykuł pod znamiennym tytułem Robot metabolism: Toward machines that can grow by consuming other machines.
Naukowcy stworzyli, inspirowany zabawką Geomag, robotyczne wyposażone w magnesy urządzenie o nazwie Truss Link. Truss Link może rozszerzać się, kurczyć i łączyć z innymi identycznymi modułami, tworząc coraz bardziej skomplikowane struktury. Badacze pokazali, w jaki sposób Truss Link samodzielnie buduje kształt dwuwymiarowy, następnie trójwymiary. A widoczny na filmie czworościan udoskonalił się, dołączając kolejny element, dzięki któremu zwiększył prędkość swojego przemieszczania się o ponad 66,5%.
To oczywiście początek badań i prezentacja pewnej koncepcji, wyznacza jednak kolejny kierunek rozwoju robotów. Naukowcy z Columbia University uważają, że w przyszłości roboty będą posiadały umiejętność podtrzymywania swojego istnienia poprzez samodzielne naprawy za pomocą zasobów otoczenia, będą mogły rozbudowywać się czy zmieniać w zależności od potrzeb. Uczeni nazwali te proces „metabolizmem robotów”.
Metabolizm robotów do cyfrowy interfejs ze światem fizycznym, który pozwala sztucznej inteligencji nie tylko rozwijać się pod względem poznawczym, ale również fizycznym. To nowy wymiar autonomii. Początkowo systemy zdolne do takiego metabolizmu będą wykorzystywane w wyspecjalizowanych zadaniach, jak eksploracja kosmosu czy usuwanie skutków katastrof. W końcu jednak o otwiera to perspektywę świata, w którym sztuczna inteligencja buduje fizyczne struktury lub tworzy roboty równie łatwo, jak dzisiaj pisze maila, wyjaśnia Wyder.
Współautor badań, Hod Lipson, zauważa, że wizja samoreplikujących się lub przebudowujących robotów wygląda jak scenariusz z filmu science fiction. Jednak faktem jest, że już teraz powierzamy robotom coraz większą część naszego życia – od autonomicznych pojazdów, poprzez automatyczne fabryki po zadania z zakresu obronności czy eksploracji kosmosu. Kto będzie konserwował i naprawiał te roboty? Nie możemy polegać wyłącznie na ludziach. Roboty muszą w końcu nauczyć się dbać same o siebie.
« powrót do artykułu -
przez KopalniaWiedzy.pl
„Inteligentne” tkaniny, o których słyszymy od lat, mają zbierać dane za pomocą sygnałów elektrycznych. Tymczasem naukowcy z ETH Zurich stworzyli tkaninę, która rejestruje fale dźwiękowe, by dokonywać precyzyjnych pomiarów. Jest lekka, tania, przepuszcza powietrze i może sprawdzić się w medycynie, codziennym życiu i podczas uprawiania sportu.
SonoTextiles to tkanina, która reaguje na dotyk, zmiany ciśnienia i ruch. Naukowcy wszyli w materiał światłowody w regularnych odstępach. Na jednym końcu każdego ze światłowodów znajduje się nadajnik emitujący fale radiowe, na drugim zaś odbiornik, który sprawdza, czy fale te uległy zmianie. Każdy z nadajników działa na innej częstotliwości, dzięki czemu potrzebujemy niewielkiej mocy obliczeniowej by stwierdzić, w którym z włókien doszło do zmiany. To znacznie bardziej efektywne rozwiązanie w porównaniu z wcześniejszymi, kiedy tekstylia musiały radzić sobie z nadmiarem danych i pojawiały się problemy z przetwarzaniem sygnałów. Nowe rozwiązanie jest na tyle proste, że w przyszłości możliwe będzie wysyłanie danych na komputer czy smartfon w czasie rzeczywistym.
Gdy wszyty w materiał światłowód się porusza, zmienia się długość fali dźwiękowej. W przypadku koszulki ruch światłowodu może być wywołany ruchem ciała czy oddychaniem. Naukowcy wykorzystali fale dźwiękowe o częstotliwości około 100 kHz. To zdecydowanie poza zakresem słyszalności człowieka, który wynosi od 20 Hz do 20 kHz.
Na razie badacze wykazali, że ich pomysł sprawdza się w laboratorium. W przyszłości opracowana przez nich technologia może np. przydać się pacjentom z astmą. Możemy bowiem wyobrazić sobie podkoszulkę monitorującą oddech i wszczynającą alarm gdy dojdzie do jego zaburzenia. Z kolei sportowcy będą mogli dzięki takiej koszulce na bieżąco monitorować sposób poruszania się, by zwiększyć wydajność czy uniknąć kontuzji. Twórcy SonoTextile mówią też o rękawiczkach, które w czasie rzeczywistym będą przekładały język migowy na tekst lub mowę. Ubrania mogą posłużyć do korygowania postawy podczas siedzenia czy chodzenia oraz informować opiekunów osób niepełnosprawnych, że należy zmienić ich pozycję, by uniknąć odleżyn.
Nowy materiał może znaleźć wiele zastosowań, ale wciąż wymaga usprawnień. Światłowody mogą pękać wskutek codziennego używania. Na szczęście można zastąpić je metalowymi włóknami, które również przewodzą fale dźwiękowe. Tego typu usprawnienia będą tematem dalszych prac badawczo-rozwojowych nad SonoTextiles.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Każdego roku ludzie pozbywają się 92 milionów ton ubrań i innych tekstyliów. Mniej niż 15% z nich jest poddawanych recyklingowi, a jedną z przyczyn takiego stanu rzeczy jest trudność w sortowaniu. Naukowcy z University of Michigan stworzyli niedrogie włókna fotoniczne, które wszyte w ubrania pozwolą na określanie ich składu i automatyczne sortowanie.
To jak kod kreskowy wszyty w tkaninę. Możemy przystosować włókna tak, by były widoczne gołym okiem, ujawniały się wyłącznie w bliskiej podczerwieni czy też stanowiły kombinację obu tych metod odczytu, mówi profesor Max Shtein.
Metki na ubraniach często nie pomagają w sortowaniu. Mogą zostać przecież wycięte lub też nadruk na nich się spierze. Nowe włókno, po wszyciu w materiał, może pozostać niewidoczne, dopóki nie zostanie na taśmie sortującej oświetlone w podczerwieni. Systemy sortowania wykorzystujące podczerwień są już wykorzystywane do rozpoznawania materiałów i działają dzięki różnej sygnaturze optycznej, jaką mają materiały o różnym składzie. Oczywiście materiały wykorzystywane w tkaninach również mają różne sygnatury optyczne, jednak większość tkanin wykonana jest z różnych materiałów, przez co taka metoda sortowania nie do końca zdaje egzamin. Żeby dobrze przeprowadzić recykling musimy znać dokładny skład tkaniny. Firma zajmująca się np. recyklingiem bawełny nie będzie chciała płacić za materiał, który w 70% składa się z poliestru. Naturalne sygnatury optyczne nie zapewnią odpowiedniej precyzji, ale nasze fotoniczne włókno może dostarczyć wszystkich informacji, zapewnia doktor Brian Iezzi.
Fotoniczne włókna, by spełniały swoje zadanie, powinny stanowić około 1% tkaniny. To może zwiększyć koszt gotowego produktu o około 25 centów, to mniej więcej tyle ile wynosi koszt tradycyjnej metki, stwierdza Iezzi. Co więcej, fotoniczne włókno może zawierać też wiele innych informacji, jak np. dane o miejscu i czasie produkcji, może pełnić też rolę hologramu potwierdzającego autentyczność produktu i jego pochodzenie od danego producenta. Tego typu dane konsument mógłby odczytać nawet za pomocą swojego smartfona. Zatem w przyszłości włókno wszyte w ubranie mogłoby stanowić źródło informacji i dla kupującego, i dla firmy prowadzącej recykling, dodaje Iezzi.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Opracowany w Belgii nowy materiał do produkcji ubrań może nas ogrzewać lub chłodzić, wszystko zależy od tego, którą stroną go włożymy. Symulacje przeprowadzone przez Muluneha Abebe i jego kolegów z belgijskiego Uniwersytetu w Mons wykazały, że ubrania z tego materiału zapewniają komfort termiczny w temperaturach różniących się nawet o 13 stopni.
Gdy znajdujemy się na zewnątrz około połowy ciepła tracimy przez zjawiska przewodnictwa i konwekcji. Ogrzewać możemy się nakładając kolejne warstwy ubrań. Jednak drugą część ciepła tracimy przez promieniowanie podczerwone, zarówno ze skóry jak i powierzchni okrywających nas ubrań. W tym wypadku możemy bronić się przed utratą ciepła blokując promieniowanie podczerwone, lub też chłodzić się – zwiększając je.
Już podczas wcześniejszych badań belgijscy naukowcy wykazali, że niektóre materiały mogą efektywnie absorbować promieniowanie podczerwone z powierzchni naszej skóry, a następnie efektywnie je uwalnia do otoczenia. W ten sposób ułatwiają nam chłodzenie się.
Dotychczas jednak tego typu materiały zawierały nieprzepuszczalne membrany, które więziły powietrze i wilgoć, więc ich noszenie byłoby niekomfortowe. Abebe i jego zespół zaprezentowali teoretyczny model materiału o grubości 20 mikrometrów, który składa się z dwóch różnych warstw. Jednej wytworzonej z włókien dielektrycznych, drugiej z włókien metalicznych. Włókna dielektryczne emitują duże ilości promieniowania podczerwonego, zaś włókna metaliczne charakteryzuje niska emisja.
Po stworzeniu takiego modelu naukowcy obliczyli jego właściwości transmisji promieniowania podczerwonego, jego odbijania i absorpcji. Z obliczeń wynika, że jeśli materiał dotykałby skóry, zapobiegałby ucieczce ciepła i odczuwalibyśmy komfortowe ciepło w temperaturze nawet 11 stopni Celsjusza. Z kolei po odwróceniu na drugą stronę efektywnie by nas chłodził w temperaturze dochodzącej do 24 stopni Celsjusza.
Nowy materiał byłby elastyczny i wygodny w używaniu, a przestrzenie między włóknami umożliwiałyby ucieczkę wilgoci. Abebe przyznaje, że ze względu na wysokie koszty wytworzenia takiego materiału, na pewno nie pojawi się on na rynku w najbliższym czasie. Jednak uczeni mają nadzieję, że ich badania zainspirują kolejne grupy naukowe i w końcu pojawią się wygodne tanie ubrania o właściwościach chłodzących i ogrzewających.
Materiał został opisany na łamach Physical Review Applied.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.