Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Naukowcy z Instytutu Ucha Bionicznego w Melbourne badali aktywność mózgu u głuchych od urodzenia kotów, które już we wczesnym dzieciństwie wyposażono w implanty ślimaka. Niewykluczone, że dzięki ich odkryciom dzieci z podobną niepełnosprawnością będą w przyszłości mówić tak samo dobrze jak maluchy słyszące (The Journal of Comparative Neurology).

Zwykle drgania fal dźwiękowych pobudzają w uchu wewnętrznym tzw. komórki rzęsate, zwane też komórkami słuchowymi bądź włoskowatymi. Drgania mechaniczne są zatem przekształcane w impulsy nerwowe. U głuchych zwierząt dość często komórki zmysłowe są nieprawidłowo zbudowane, dlatego implanty muszą stymulować neurony bezpośrednio.

Australijczykom zależało na sprawdzeniu, jak mózg reaguje na pobudzanie w ten właśnie sposób. Utrwalali aktywność elektryczną kory siedemnastu 8-miesięcznych kotów. Zwierzęta nie słyszały od urodzenia. Dziesięć otrzymało implant ślimaka stosunkowo niedawno, a 7 wszczepiono go w wieku 8 tygodni. Okazało się, że w pierwszej grupie włączenie urządzenia skutkowało chaotyczną aktywnością kory. Dźwięk nie był postrzegany spójnie, co w przypadku ludzi uniemożliwiałoby opanowanie mowy. W drugiej grupie aktywność kory przypominała zaś wzorce występujące u słyszących zwierząt.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Badacze z Wydziału Fizyki Uniwersytetu Warszawskiego, przy użyciu technologii światłoczułych elastomerów, zademonstrowali mikrorobota naśladującego ruch ślimaka. 10-milimetrowej długości robot, napędzany i sterowany przy pomocy modulowanej wiązki lasera, potrafi poruszać się po płaskim podłożu, wspinać po pionowej ścianie i pełzać po szklanym suficie.
      W przyrodzie organizmy różnej wielkości – od mikroskopijnych nicieni, przez dżdżownice, po mięczaki – poruszają się w rozmaitych środowiskach dzięki przemieszczającym się deformacjom miękkiego ciała. W szczególności ślimaki używają śluzu – śliskiej, wodnistej wydzieliny – by poprawić kontakt między miękką nogą a podłożem. Taki sposób poruszania się ma kilka unikalnych cech: działa na różnych podłożach: drewnie, szkle, teflonie czy piasku i w różnych konfiguracjach, włączając w to pełzanie po suficie. W robotyce, prosty mechanizm pojedynczej nogi mógłby zapewnić odporność na warunki zewnętrzne i zużycie elementów oraz duży margines bezpieczeństwa dzięki ciągłemu kontaktowi z podłożem. Do tej pory zademonstrowano jedynie nieliczne roboty naśladujące pełzanie ślimaków w skali centymetrów, z napędem elektro-mechanicznym.
      Ciekłokrystaliczne elastomery (LCE) to inteligentne materiały, które mogą szybko, w odwracalny sposób zmieniać kształt, na przykład po oświetleniu. Dzięki odpowiedniemu uporządkowaniu (orientacji) cząsteczek elastomeru można programować deformację takiego elementu. Umożliwia to zdalne zasilanie i sterowanie mechanizmów wykonawczych i robotów przy pomocy światła.
      Wykorzystując technologię światłoczułych elastomerów badacze z Wydziału Fizyki Uniwersytetu Warszawskiego we współpracy z Wydziałem Matematyki Uniwersytetu w Suzhou w Chinach zbudowali pierwszego na świecie robota, który porusza się naśladując pełzanie ślimaka w naturalnej skali. Ruch robota generowany jest przez poruszające się deformacje miękkiego ciała, wywołane wiązką lasera i ich oddziaływanie z podłożem przez warstwę sztucznego śluzu. Oświetlany wiązką lasera 10-milimetrowy robot może wspinać się na pionową ścianę i pełzać po szklanym suficie z prędkością kilku milimetrów na minutę, wciąż około 50 razy wolniej niż ślimaki porównywalnej wielkości.
       Mimo niewielkiej prędkości, konieczności ciągłego uzupełniania warstwy śluzu i niskiej sprawności energetycznej, nasz robot umożliwia nowe spojrzenie na mikro-mechanikę inteligentnych materiałów oraz badania nad poruszaniem się ślimaków i podobnych zwierząt – mówi Piotr Wasylczyk z Pracowni Nanostruktur Fotonicznych, który kierował projektem. W naszych badaniach biorą udział studenci już od pierwszych lat studiów na Wydziale Fizyki. Pierwszym autorem publikacji o robocie-ślimaku w Macromolecular Rapid Communications jest Mikołaj Rogóż, laureat Diamentowego Grantu, który właśnie kończy pracę magisterską na temat ciekłokrystalicznych elastomerów i zaczyna doktorat w naszej grupie.
      Badacze, którzy wcześniej zademonstrowali napędzanego światłem robota-gąsienicę naturalnej wielkości, wierzą, że nowe inteligentne materiały w połączeniu z nowatorskimi metodami wytwarzania miniaturowych elementów, pozwolą im konstruować kolejne mikro-roboty i napędy – obecnie pracują nad miniaturowym silnikiem i mikro-pęsetą sterowaną światłem.
      Badania nad miękkimi mikro-robotami i polimerowymi mechanizmami wykonawczymi finansowane są przez Narodowe Centrum Nauki w ramach projektu „Mechanizmy wykonawcze w mikro-skali na bazie foto-responsywnych polimerów” oraz przez Ministerstwo Nauki i Szkolnictwa Wyższego w ramach "Diamentowego Grantu" przyznanego M. Rogóżowi.
      Fizyka i astronomia na Uniwersytecie Warszawskim pojawiły się w 1816 roku w ramach ówczesnego Wydziału Filozofii. W roku 1825 powstało Obserwatorium Astronomiczne. Obecnie w skład Wydziału Fizyki UW wchodzą Instytuty: Fizyki Doświadczalnej, Fizyki Teoretycznej, Geofizyki, Katedra Metod Matematycznych oraz Obserwatorium Astronomiczne. Badania pokrywają niemal wszystkie dziedziny współczesnej fizyki, w skalach od kwantowej do kosmologicznej. Kadra naukowo-dydaktyczna Wydziału składa się z ponad 200 nauczycieli akademickich, wśród których jest 77 pracowników z tytułem profesora. Na Wydziale Fizyki UW studiuje ok. 1000 studentów i ponad 170 doktorantów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W bieżącym roku ukazało się rekordowo dużo artykułów naukowych. Największy wzrost publikacji zaobserwowano w krajach rozwijających się. Na czele listy krajów o największym wzroście publikacji naukowych znajdziemy... Pakistan i Egipt. Liczba publikacji dokonanych przez naukowców z Pakistanu zwiększyła się aż o 21%, a Egipcjanie opublikowali o 15,9% więcej artykułów naukowych niż w roku ubiegłym.
      Na trzeciej pozycji znajdziemy Chiny ze wzrostem publikacji o około 15%. Na dalszych pozycjach uplasowały się Hongkong (ok. 12%), Indie (9,5%), Brazylia i Meksyk (po 9%) oraz Iran (ok. 8%). Do pierwszej dziesiątki listy trafiła też Polska (poniżej 8%) oraz RPA (ok. 7,5%).
      Jak mówi Caroline Wagner z Ohio State University, była doradczyni rządu USA, która specjalizuje się w polityce naukowej i technologicznej, w ostatnich dekadach jesteśmy świadkami niezwykłej dywersyfikacji na polu naukowym. Jeszcze w 1980 roku 90% światowych badań naukowych było prowadzonych w zaledwie 5 krajach. Były to USA, Wielka Brytania, Francja, Niemcy i Japonia. Obecnie w grupie najbardziej płodnych naukowo krajów znajdziemy 20 państw, stwierdza uczona.
      W porównaniu z ubiegłym rokiem liczba opublikowanych artykułów naukowych zwiększyła się o około 5%. Na całym świecie ukazało się 1.620.731 publikacji naukowych. Liderem pod względem ich liczby są Stany Zjednoczone (ponad 400 000 publikacji), ale Amerykanom po piętach depczą Chińczycy (ok. 380 000 publikacji). Następna na liście, z około 120 000 publikacji, jest Wielka Brytania. Na dalszych pozycjach uplasowały się Niemcy, Japonia, Francja, Kanada, Indie, Włochy i Australia.
      Dane takie zostały skompilowane na zlecenie Nature przez firmę Clarivate, która prowadzi największą na świecie bazę danych o publikacjach naukowych. W analizie uwzględniono 40 krajów, w których opublikowano co najmniej 10 000 artykułów naukowych. Analiza bazuje na szacunkach opierających się na liczbie badań oraz publikacjach w recenzowanych czasopismach naukowych z okresu styczeń–sierpień, gdyż mija sporo czasu zanim opublikowany artykuł trafi do bazy danych.
      Analitycy z Clarivate nie wiedzą jeszcze, co napędziło tak znaczny wzrost liczby publikacji z Egiptu i Pakistanu. Niewykluczone, że przyczyną takiego stanu rzeczy jest fakt, iż kraje te znajdują się na samym dole listy 40 najbardziej płodnych naukowo państw, zatem nieduże zwiększenie liczby publikacji przełoży się na spory wzrost procentowy. Ponadto do bazy trafiają informacje z coraz większej liczby regionalnych czasopism naukowych. Nie można też wykluczyć, że egipscy i pakistańscy naukowcy lepiej wykorzystali możliwość współpracy z zagranicznymi naukowcami i napłynęły do nich większe fundusze.
      Z kolei wzrost Chin nie jest zaskoczeniem. Państwo Środka od 20 lat prowadzi politykę intensywnego rozwoju nauki i szkolnictwa wyższego. Nie można wykluczyć, że już w najbliższym czasie Chiny prześcigną USA pod względem liczby publikacji naukowych. W USA publikuje się około 35 000 artykułów więcej, więc różnica jest naprawdę niewielka. Rośnie też jakość chińskich badań naukowych.
      Clarivate Analytics opublikowało też niezwykle interesujące zestawienie często cytowanych naukowców. Do często cytowanych zaliczono ponad 4058 nazwisk, reprezentujących 21 dziedzin nauki. Najwięcej często cytowanych naukowców, bo aż 2639, pochodzi z USA. Następni na liście są Brytyjczycy (546) oraz Chińczycy (482). Z Niemiec pochodzi 356 często cytowanych uczonych, z Australii – 245, a z Holandii – 189. Kolejni na liście są uczeni z Kanady (166 nazwisk), Francji (157), Szwajcarii (133) i Hiszpanii (115).
      Na liście znalazło się też 6 Polaków. Są to: Andrzej Budaj z Warszawskiego Uniwersytetu Medycznego, Dariusz Dudek z Uniwersytetu Jagiellońskiego, Jolanta Lissowska z Centrum Onkologii-Instytut im. Marii Skłodowskiej-Curie, Piotr Ponikowski z Uniwersytetu Medycznego we Wrocławiu, Michał Tendera ze Śląskiego Uniwersytetu Medycznego oraz Adam Torbicki z Europejskiego Centrum Zdrowia w Otwocku.
      Przy takim rozłożeniu sił nie dziwi fakt, że listę instytucji, z których pochodzą najczęściej cytowani naukowcy, otwierają instytucje z USA. Na pierwszym miejscu uplasował się Uniwersytet Harvarda, z którego pochodzi 186 najczęściej cytowanych autorów. Na drugim miejscu znajdziemy Narodowe Instytuty Zdrowia, w których pracuje 148 najczęściej cytowanych naukowców, a kolejny jest Uniwersytet Stanforda z 100 najczęściej cytowanych. Kolejne pozycje na liście zajęły: Chińska Akademia Nauk (99 cytowanych), niemieckie Towarzystwo Maksa Plancka (76), Uniwersytet Kalifornijski w Berkeley (64), Uniwersytet w Oksfordzie (59), Uniwersytet w Cambridge (53), Washington University (51) oraz Uniwersytet Kalifornijski w Los Angeles (47).
      Aż 194 (4,8%) spośród wspomnianych 4058 naukowców pojawia się w dwóch dziedzinach nauki, a elitę stanowi 24 uczonych, którzy są cytowani w 3 dziedzinach nauki. Na tę elitę składa się 13 naukowców z USA, 3 z kontynentalnych Chin, 2 ze Szwajcarii i po 1 z Arabii Saudyjskiej, Francji, Hongkongu, Niemiec, Korei Południowej i Wielkiej Brytanii.
      Podczas przeprowadzonej analizy zidentyfikowano też naukowców o wyjątkowo dużym wpływie jeśli chodzi o liczbę i jakość cytowań. Utworzono dla nich osobną kategorię i sprawdzono, z których krajów pochodzą. Okazało się, że kraje, z których ponad 40% często cytowanych naukowców jednocześnie trafiło na listę najbardziej wpływowych uczonych to Szwecja (53%), Austria (53%), Singapur (47%), Dania (47%), Chiny (43%) i Korea Południowa (42%).
      Wśród najbardziej wpływowych naukowców znalazło się 17 noblistów oraz 56 nazwisk, których Clarivate Analytics uznaje – na podstawie jakości ich cytowań – za potencjalnych laureatów Nagrody Nobla w przyszłości.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Amerykańska Narodowa Fundacja Nauki (NFS) może liczyć w przyszłym roku na wzrost budżetu o 4-5 procent. Takie optymistyczne przypuszczenia oparte są na uchwałach podjętych przez obie izby Kongresu USA. Prawodawcy sygnalizują też coraz większe wsparcie dla budowy przez NFS nowych dużych ośrodków badawczych.
      W tym miejscu warto przypomnieć, że Biały Dom chciał znaczących cięć wydatków w budżecie federalnym na prace badawczo-rozwojowe. Kongres nie tylko nie posłuchał życzeń administracji prezydenckiej, ale zwiększył tegoroczny budżet R&D do rekordowo wysokiego poziomu. Teraz okazuje się, że jedna z największych federalnych instytucji naukowych, Narodowa Fundacja Nauki, może w przyszłym roku liczyć na jeszcze większe pieniądze.
      Rod podatkowy 2019 rozpocznie się w USA 1 października 2018 roku. Tegoroczny budżet NSF to 7,767 miliarda dolarów. Komitet finansowy Izby Reprezentantów przegłosował dokument, który mówi o zwiększeniu przyszłorocznego budżetu NSF do kwoty 8,175 miliarda USD. W ubiegłym tygodniu komitet finansowy Senatu zatwierdził przyszłoroczny budżet NSF na poziomie 8,069 miliarda USD. Minie wiele miesięcy, zanim Kongres zatwierdzi budżet państwa. Nie wiadomo, czy obecne propozycje odnośnie NSF zostaną utrzymane. Musimy pamiętać, że wiele innych naukowych agend rządowych będzie konkurowało o te pieniądze.
      Specjaliści zwracają jednak uwagę, że najbardziej interesujące w ostatnich uchwałach obu wspomnianych komitetów jest znaczące zwiększenie wydatków na MREFC (Major Research Equipment and Facilities Construction). Z tej pozycji budżetu NSF finansowana jest duża infrastruktura, taka jak teleskopy, statki czy różnego typu obserwatoria. W bieżącym roku NSF wnioskowała o przyznanie na MREFC 94 milionów dolarów. Pieniądze te miały pozwolić na kontynuowanie budowy dwóch statków do badań oceanicznych, Daniel K. Inouye Solar Telescope na Hawajach oraz Large Synoptic Survey Telescope (LSST) w Chile. Był to najmniejszy budżet MREFC od 2002 roku. Jednak Kongres zdecydował inaczej. Izba Reprezentantów głosowała za budżetem MREFC w wysokości 268 milionów, a Senat za przyznaniem 249 milionów dolarów. Mają powstać trzy statki badawcze i znacząco zwiększono budżet LSST. Ponadto, gdy NSF poprosiła o 103 miliony dolarów na rozbudowę stacji McMurdo na Antarktydzie, prawodawcy uruchomili program Antarctic Infrastructure Modernization for Science, na który w ciągu 8 lat zostanie przeznaczonych 355 milionów dolarów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Nowotwory to jedna z głównych przyczyn zgonów w krajach uprzemysłowionych. Wiele z nich potrafimy leczyć lub kontrolować, ale mimo to wciąż umiera na nie duża liczba ludzi. Przyczyną jest zbyt późna diagnoza. Opracowanie metody wczesnego wykrywania rozwijającego się nowotworu pozwoliłoby nie tylko uratować życie wielu ludziom, ale znacząco obniżyłoby koszty terapii.
      Potencjalną metodę ostrzegania o początkach nowotworu opracował profesor Martin Fusseneger ze Szwajcarskiego Instytutu Technologicznego w Zurichu i współpracujący z nim naukowcy. Wykorzystuje ona sieć syntetycznych genów rozpoznających bardzo wczesne etapy rozwoju nowotworów prostaty, płuc, piersi i jelita grubego. Na tych wczesnych etapach dochodzi do zwiększenia poziomu wapnia we krwi i właśnie ten podniesiony poziom wykrywa system Fussenegera.
      Wspomniana sieć genów jest umieszczana w implancie, który wstrzykiwany jest pod skórę, gdzie bez przerwy monitoruje poziom wapnia we krwi. Gdy poziom ten zostaje przez dłuższy czas przekroczony, uruchamiana jest cała kaskada sygnałów, które powodują, że we wstrzykniętej w określone miejsce na skórze zmodyfikowanej genetycznie grupie komórek dochodzi do produkcji melaniny. Na skórze pojawia się widoczne gołym okiem zaciemnione miejsce, które jest sygnałem ostrzegawczym o rozwijającym się nowotworze. Co istotne, sygnał ten pojawia się na długo zanim jeszcze nowotwór można wykryć za pomocą standardowych metod diagnostycznych. Posiadacz implantu powinien wówczas udać się do lekarza w celu specjalistycznej diagnostyki, mówi Fussenegger.
      Naukowcy wykorzystali jako wskaźnik poziom wapnia, gdyż jest on ściśle kontrolowany przez organizm. Kości służą jako bufor regulujący poziom wapnia we krwi. Zbyt duża ilość tego pierwiastka może być sygnałem o rozwoju jednego z czterech wspomnianych typów nowotworów. Wczesna diagnostyka to klucz do sukcesu. Na przykład w przypadku raka piersi szanse na wyleczenie przy wczesnej diagnozie wynoszą aż 98%, podczas gdy przy późnej diagnozie spadają do 25%. Obecnie ludzie trafią do lekarza przeważnie wówczas, gdy guz daje jakieś objawy. Niestety, często jest wówczas zbyt późno, stwierdza Fussenegger.
      Nawiększym ograniczeniem nowej metody jest krótki czas życia implantu. Jak mówi Fussenegger, z literatury specjalistycznej wynika, że po zamknięciu w odpowiednich kapsułach żywe komórki mogą przetrwać około roku. Po tym czasie implant trzeba będzie zapewne wymieniać.
      Na razie naukowcy dysponują wczesnym prototypem implantu. Był on z powodzeniem testowany na myszach i świniach. Profesor Fusseneger mówi, że opracowanie w pełni rozwiniętej wersji dla ludzi oraz proces jej testowania i dopuszczania do użytku potrwają co najmniej 10 lat.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W powszechnej opinii średniowiecze to prawdziwe wieki ciemne. Przeciętny człowiek kojarzy średniowiecze z upadkiem cywilizacji, wojnami religijnymi, zabobonami i alchemią, która, swoją drogą, miała więcej wspólnego z nauką niż się wydaje.
      Specjaliści wiedzą jednak, że jest to obraz niepełny, a nauka nie rozpoczęła się od renesansu. Na Durham University powstała nawet inicjatywa o nazwie Ordered Universe, której celem jest pokazanie, jak wielki ferment naukowy miał miejsce w Anglii od XIII do XV wieku. Teraz naukowcy skupieni wokół tej inicjatywy dokonali zdumiewającego odkrycia. Okazuje się, że Robert Grosseteste, żyjący w XIII wieku duchowny, uczony i późniejszy biskup Lincoln, miał podobną wiedzę o podstawach kolorów, jaką mamy obecnie.
      Grosseteste był prawdziwym „człowiekiem renesansu“, który żył przed renesansem. Pisał o dźwięku, gwiazdach i kometach. Jednak uczeni z Durham są najbardziej podekscytowani dotarciem do napisanej przez niego w 1225 roku rozprawy na temat kolorów.
      Obecnie wiemy, że kolor zależy od długości fali, które są odbijane i pochłaniane. Producenci monitorów korzystają z faktu, że każdy kolor można uzyskać za pomocą trzech składowych - czerwonego, zielonego i niebieskiego - manipulując ich jasnością, nasyceniem i barwą.
      Teraz naukowcy uważają, że urodzony około 1175 roku Grosseteste wiedział mniej więcej to samo. Swoją teorię kolorów opisał, gdy był wykładowcą teologii na Oxfordzie i zawarł ją w zaledwie 400 łacińskich słowach. Nie przedstawił przy tym żadnych wyliczeń matematycznych, żadnych diagramów. To niezwykle konkretny fragment tekstu - mówi historyk Giles Gasper.
      Grosseteste pisze, że kolory nie istnieją samoistnie, ale powstają wskutek interakcji światła i materii. Ponadto stwierdza, że kolory powstają poprzez zmiany na trzech skalach. Jedna z nich rozciąga się od clara (jasna) do obscura (ciemna), druga od multa (liczna) do pauca (nieliczna), a trzecia od purum (czyste) do impurum (zanieczyszczone). Biel to, zdaniem duchownego, mieszanina clara, multa i purum. Jak łatwo się przekonać, używając jakiegokolwiek programu graficznego, biel rzeczywiście uzyskamy mieszając trzy kolory - czerwony, zielony i niebieski - przy ich największej jasności, barwie i nasyceniu. Na poziomie koncepcji to, co pisał Grosseteste zgadza się w niezwykle wysokim stopniu z tym, co wiemy obecnie - mówi Hannah Smithson z Oxford University, która uczestniczy w pracach Ordered Universe.
      Oczywiście biskup używał innych terminów niż my obecnie nie mówił o jasności, ale o skali jasny-ciemny, nie używał terminu nasycenie, ale pisał o liczna-nieliczna, w końcu zamiast o barwie informował o czystości koloru.
      Naukowcy uważają, że w teorii duchownego musiało być coś więcej niż tylko przypadek, dzięki któremu wymyślił właściwości światła. Zauważają, że wcześniej nie przywiązywano zbytnio uwagi do tego, co napisał, gdyż popełnił w tekście dwa podstawowe błędy. Pierwszy z nich to użycie cyfry 9 tam, gdzie powinno być 14. Drugi to stwierdzenie, że czarny składa się jedynie z obscura i pauca. Tymczasem, skoro sam napisał, iż biały to clara, multa i purum, zatem czarny powinien być obscura, pauca i impurum.
      Uczeni odkryli jednak, że Grosseteste padł ofiarą kopistów. Z niewiadomych przyczyny naukowcy pracowali dotychczas na późniejszych kopiach jego tekstu. Tymczasem Gasper dotarł do wcześniejszej jego wersji, która przechowywana jest w Oxfordzie i okazało się, że duchowny napisał liczbę 14. Użył przy tym arabskich cyfr, które w Europie pojawiły się w 1202 roku wraz z opublikowaniem przez Fibonecciego Liber Abaci. To pokazuje, że biskup był na bieżąco z najnowszymi osiągnięciami naukowymi. Niestety człowiek, który kopiował jego tekst najwyraźniej nie znał arabskich cyfr i zinterpretował znaki jako łacińską dziewiątkę - IX.
      Gasper, podejrzewając, że kopiści mogli popełnić więcej pomyłek, wybrał się do Madrytu, gdzie w Bibliotece Narodowej Hiszpanii przechowywana jest najstarsza znana wersja manuskryptu średniowiecznego uczonego. W nim w opisie koloru czarnego znalazł brakujące impurum. To dowodzi, że Grosseteste pracował równie metodycznie i skrupulatnie, a jego wywody były tak logiczne, jak każdego prawdziwego uczonego w wiekach późniejszych.
      Naukowcy z Ordered Universe zwracają uwagę, że mamy obecnie tendencję do lekceważenia podobnych traktatów, ze względu na inny sposób argumentacji i dowodzenia. Jedną z rzeczy, która mnie uderza, gdy pracuję nad tym projektem jest spostrzeżenie, jak mocno średniowieczne myślenie jest przesiąknięte matematyką. To bardzo wzmacnia wysuwane wówczas twierdzenia, ale jako że nie jest przedstawione w formie wzoru matematycznego, bardzo trudno jest nam to zauważyć - mówi Gasper.
      Uczeni chcą teraz dotrzeć do innych wczesnych kopii pism Grosseteste’a by sprawdzić, czy w dotychczasowych badaniach nie pominięto innych równie ważnych rzeczy.
×
×
  • Create New...