Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Im więcej ptaków, tym mniej wirusów
dodany przez
KopalniaWiedzy.pl, w Medycyna
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Około 80% osób zarażonych Wirusem Zachodniego Nilu (WNV) nie wykazuje żadnych objawów chorobowych. Reszta jednak poważnie choruje, z czego u 1% rozwija się wymagające hospitalizacji zapalenie mózgu. Z tych osób umiera 20%. Zespół naukowy, na czele którego stali Jean-Laurent Casanova z Uniwersytetu Rockefellera oraz Alessandro Borghesi z Polikliniki św. Mateusza w Padwie odkryli, że to defekt układu odpornościowego powoduje, iż dla niektórych pacjentów zarażenie kończy się poważnym zachorowaniem, a nawet śmiercią.
Naukowcy zauważyli, że u 35% osób hospitalizowanych z powodu WNV występują przeciwciała neutralizujące interferony typu I, molekuły sygnałowe zaangażowane w zwalczanie infekcji wirusowych. Najwięcej takich przeciwciał występowało u osób, które w wyniku WNV zachorowały na zapalenie mózgu. Tym samym wirus zachodniego nilu dołączył do grupy chorób, w których występuje związek pomiędzy przypadkami poważnych zachorowań, a występowaniem przeciwciał neutralizujących interferony. Innymi chorobami tego typu są grypa, COVID i MERS.
Wirus Zachodniego Nilu zostało odkryty w Ugandzie w 1937 roku. Od tamtej pory został odnotowany w 60 krajach. Zauważono, że rozprzestrzenia się głównie wzdłuż szlaków migracyjnych ptaków. Komary z rodzaju Culex przenoszą wirusa pomiędzy ptakami a innymi zwierzętami, w tym ludźmi.
Interferony typu I powinny zapobiegać przekraczaniu przez wirusy bariery krew-mózg. Casanova i jego zespół odkryli, że układy odpornościowe niektórych ludzi neutralizują te interferony. W przypadku WNV kluczowe są dwa podtypy: 12 IFN-α oraz IFN-ω. Badania nad pacjentami, którzy niedawno trafili do szpitala, więc ich organizmy nie zdążyły jeszcze wytworzyć przeciwciał przeciwko wirusowi zachodniego nilu wykazały, że wirus ten oportunistycznie korzysta z defektu układu odpornościowego.
Obecnie nie istnieje szczepionka przeciwko WNV, dlatego autorzy badań uważają, że tam, gdzie wirus ten występuje endemicznie należy prowadzić szeroko zakrojone badania przesiewowe, by określić, które osoby są szczególnie narażone. Osoby takie, jeśli pojawią się u nich objawy zarażenia, mogłyby poinformować lekarzy w szpitalu o defekcie swojego układu odpornościowego, co pomogłoby w szybszym wdrożeniu leczenia.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Niektórzy ludzie są bardziej atrakcyjni dla komarów niż inni. Grupa amerykańskich naukowców poinformowała właśnie na łamach pisma Cell, co powoduje, że część z nas to istne magnesy przyciągające całe chmary brzęczących krwiopijców. Uczeni przetestowali reakcję komarów na zapach człowieka i zidentyfikowali ludzi wyjątkowo je przyciągających.
Analizy chemiczne wykazały, że skóra osób wysoce atrakcyjnych dla komarów wytwarza więcej kwasów karboksylowych. Gdy naukowcy wyhodowali zmutowane komary, którym brakowało chemicznych koreceptorów Ir8a, Ir25a lub Ir76b zwierzęta miały poważne problemy z wykryciem zapachu człowieka, ale zachowały zdolność do odróżniania ludzi wysoce atrakcyjnych i słabo atrakcyjnych. Wskazuje to na istnienie u komarów jakiegoś dodatkowego redundantnego systemu wykrywania ludzi.
Osoby działające na komary jak magnesy wytwarzały znacząco więcej trzech kwasów karboksylowych – pentadekanowego, heptadekanowego i nonadekanowego – oraz 10 niezidentyfikowanych związków należących do tej samej klasy. Stosunek tych i innych kwasów do siebie różnił się znacząco u ludzi przyciągających komary. To oznacza, że może istnieć więcej niż jedna droga, za pomocą której komary uznają niektórych ludzi za wyjątkowo atrakcyjnych.
Autorzy badań nie identyfikowali związków, które powodowały, że niektórzy ludzie są mniej atrakcyjni dla komarów. Przypominają jednak, że badania sprzed kilkunastu lat wykazały istnienie związków, których większa ilość występuje u ludzi mało atrakcyjnych dla komarów. W tym kontekście zauważają, że skóra jednego z uczestników obecnych badań wydzielała dużo kwasów karboksylowych, ale osoba ta nie przyciągała komarów. Możliwe zatem, że badany wydzielał też jakiś naturalny repelent. Kwestii tej jednak nie badano.
Warto też pamiętać, że z wcześniejszych badań wynika, iż komary reagują na bliźnięta jednojajowe w bardziej podobny sposób niż na bliźnięta dwujajowe, co sugeruje istnienie silnego komponentu genetycznego wpływającego na przyciąganie komarów przez ludzi.
Najnowsze badania są zgodne z wcześniejszymi spostrzeżeniami, z których wynika, że u ludzi i myszy zarażonych malarią dochodzi do zmian chemii zapachu skóry, co przyciąga komary i ułatwia transmisję zarodźca malarii.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Każdy z nas przekonał się, że przed komarami nie ma ucieczki. Te małe bzyczące potwory, które zabijają więcej ludzi niż jakiekolwiek inne zwierzę, zawsze nas wyczują i znajdą sposób, by ugryźć. Naukowcy z Boston University odkryli właśnie, że komary mają wyjątkowo zorganizowany zmysł węchu, który wydaje się wyspecjalizowany do wyszukiwania ludzi. Odkrycie to znacząco zmienia naszą wiedzę dotyczącą węchu owadów.
Przedmiotem badań amerykańskich naukowców był gatunek Aedes aegypti. Owady te przenoszą liczne niebezpieczne choroby, jak zika, chikungunya, żółta gorączka. Jeszcze do niedawna zamieszkiwały wyłącznie tropiki, jednak przez zmiany klimatyczne rozszerzają swój zasięg i coraz powszechniej występują np. w Europie czy Stanach Zjednoczonych. Rośnie więc obawa o pojawienie się chorób tropikalnych na obszarach, na których dotychczas nie występowały. Badania nad biologią komarów i sposobami ochrony przed nimi stają się więc coraz pilniejszą potrzebą.
Ludzie wyczuwają zapachy dzięki neuronom węchowym znajdującym się w nosie. Uważa się, że w każdym z tych neuronów dochodzi do ekspresji jednego receptora węchowego. Mamy więc jeden receptor na jeden neuron. Zapachy wyczuwamy więc dzięki wielu różnym receptorom. Każdy z nich wiąże się z inną molekułą zapachową, przesyła informacje do mózgu, gdzie tworzona jest pełna mapa danego zapachu, dzięki czemu wiemy, co czujemy. Podobnie działa to u owadów, z tym że u nich za wyczuwanie zapachów odpowiedzialne są czułki.
Okazuje się jednak, że zmysł węchu Aedes aegypti zorganizowany jest inaczej. U komarów w jednym neuronie dochodzi do ekspresji wielu receptorów węchowych. To szokująco dziwaczne. Nie tego się spodziewaliśmy, mówi kierująca grupą badawczą profesor Meg Younger.
Na potrzeby badań grupa Younger stworzyła genetycznie zmodyfikowane komary, które świeciły pod wpływem pewnych zapachów. W ten sposób naukowcy mogli na bieżąco obserwować reakcję zwierząt na zapachy. Wykorzystali też techniki genetyczne do oznaczenia różnych grup neuronów węchowych.
Badania wykazały, że komary posiadają niezwykły zmysł węchu, w którym w pojedynczym neuronie dochodzi do ekspresji wielu różnych receptorów. To wskazują na istnienie systemu redundancji i specjalizacji w wyczuwaniu ludzi. Odkrycie wyjaśnia też wyniki wcześniejszych badań, w czasie których usuwano komarom całe zestawy neuronów węchowych odpowiedzialnych za wyczuwanie dwutlenku węgla, co jednak nie przeszkadzało owadom w znalezieniu człowieka.
Profesor Younger mówi, że przeprowadzone badania mogą wyjaśniać, dlaczego tak trudno jest uchronić się przed komarami. Teraz uczona chce zbadać, jak wyjątkowy system węchowy Aedes aegypti wpływa na zachowanie komarów. Jej celem jest opracowanie bardziej skutecznych repelentów lub też atraktantów, które będą dla komarów bardziej atrakcyjne niż człowiek.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Mało kto lubi komary. Są uważane za jedne z najbardziej uprzykrzających życie owadów, a do tego roznoszą choroby, zabijające każdego roku olbrzymią liczbę ludzi. Wiele osób najchętniej wyeliminowałoby komary w ogóle. Jednak ich pozbycie się może spowodować poważne zmiany w ekosystemie. Tymczasem nasze zdrowie jest w wielu aspektach bezpośrednio powiązane ze zdrowiem ekosystemu, również z tym, jakie miejsce zajmują w nim komary.
María José Ruiz-López sporo wie o komarach. Unia Europejska finansuje jej badania nad rolą komarów w przenoszeniu Wirusa Zachodniego Nilu. Komary odgrywają wiele ról w środowisku naturalnym, mówi uczona. Przypomina, że krwią żywią się jedynie samice. Za to zarówno samice, jak i samce, żywią się nektarem roślinnym. To zaś oznacza, że są istotnymi zapylaczami, tym ważniejszymi, iż aktywnymi w nocy, gdy inni zapylacze nie pracują.
Jednak rola ekologiczna komarów nie ogranicza się wyłącznie do zapylania przez osobniki dorosłe. Larwy komarów odfiltrowują z wód stojących mikroorganizmy, glony i detrytus, martwą materię organiczną. Same zaś stanowią pożywienie dla małych ryb i płazów, które z kolei są pożywieniem dla większych ryb i ptaków. A dorosłe komary to pożywienie dla ptaków i pająków. Dlatego też Ruiz-López ostrzega, że wyeliminowanie nawet jednego gatunku komarów przyniesie konsekwencje, jakich nie potrafimy przewidzieć. Prawdopodobnie będą poważniejsze, niż sobie wyobrażamy, stwierdza.
Jak już wspomnieliśmy, Ruiz-López bada rolę, jaką komary odgrywają w roznoszeniu Wirusa Zachodniego Nilu. Wirus ten od dziesięcioleci obecny jest w Europie. W latach 2011–2019 wykryto 3549 przypadków infekcji wśród ludzi. Obecnie wirus zwiększa swój zasięg i przesuwa się na północ. W 2018 roku zaczął infekować ludzi w Niemczech, a w 2020 pojawił się w Holandii.
Z badań Ruiz-López jasno wynika, jak ważne jest, byśmy nie niszczyli środowiska naturalnego. Otóż Wirus Zachodniego Nilu zwykle roznosi się pomiędzy ptakami a komarami. Uczona odkryła, że niektóre gatunki ptaków, jak np. wróble, są bardzo podatne na działanie tego wirusa. Inne, jak przepiórka czy turkawka, są bezobjawowymi nosicielami. Dla ludzi wirus zaczyna stanowić problem, gdy usuną ze środowiska ulubione źródło pożywienia komarów, czyli ptaki. Wtedy komary zaczynają szukać innego źródła krwi i trafiają na ludzi. Wtedy właśnie dochodzi do infekcji.
Zawsze na swoich wykładach mówi, że to jeden wielki system zdrowotny. Że nasze zdrowie nie jest czymś oddzielnym od zdrowia zwierząt i całego ekosystemu. W zdrowym ekosystemie istnieją komary, które oczyszczają wodę i którymi żywią się pająki. Ekosystem potrzebuje wszystkich tych elementów, stwierdza uczona.
Komary mają swoje ulubione ofiary. Te, które roznoszą Wirusa Zachodniego Nilu, lubią żerować na ptakach. Gdy zaczyna brakować ulubionych żywicieli, owady szukają dla nich zastępstwa. I znajdują nas.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Wirusolodzy od dawna wiedzą o niezwykłym zjawisku dotyczącym wirusów atakujących drogi oddechowe. Dla patogenów tych naturalnym środowiskiem są ciepłe i wilgotne drogi oddechowe. Ich względna wilgotność wynosi zwykle 100%. Wystawienie na bardziej suche powietrze poza organizmem powinno szybko niszczyć wirusy. Jednak wykres czasu ich przeżywalności w powietrzu układa się w literę U.
Przy wysokiej wilgotności wirus może przetrwać dość długo, gdy wilgotność spada, czas ten ulega skróceniu, ale w pewnym momencie trend się odwraca i wraz ze spadającą wilgotnością powietrza czas przetrwania wirusów... zaczyna się wydłużać.
Naukowcy od dawna zastanawiali się, dlaczego przeżywalność wirusów zaczyna rosnąć, gdy względna wilgotność powietrza zmniejszy się do 50–80 procent. Odpowiedzią mogą być przejścia fazowe w ośrodku, w którym znajdują się wirusy. Ray Davis i jego koledzy z Trinity University w Teksanie zauważyli, że w bogatych w białka aerozole i krople – a wirusy składają się z białek – w pewnym momencie wraz ze spadkiem wilgotności zachodzą zmiany strukturalne.
Jedna z dotychczasowych hipotez wyjaśniających kształt wykresu przeżywalności wirusów w powietrzu o zmiennej wilgotności przypisywała ten fenomen zjawisku, w wyniku którego związki nieorganiczne znajdujące się w kropli, w której są wirusy, w miarę odparowywania wody migrują na zewnątrz kropli, krystalizują i tworzą w ten sposób powłokę ochronną wokół wirusów.
Davis i jego zespół badali aerozole i kropelki złożone z soli i białek, modelowych składników dróg oddechowych. Były one umieszczone na specjalnym podłożu wykorzystywanym do badania możliwości przeżycia patogenów.
Okazało się, że poniżej 53-procentowej wilgotności krople badanych płynów tworzyły złożone wydłużone kształty. Pod mikroskopem było zaś widać, że doszło do rozdzielenia frakcji płynnej i stałej. Zdaniem naukowców, to dowód na przemianę fazową, podczas której jony wapnia łączą się z proteinami, tworząc żel. Zauważono jednak pewną subtelną różnicę. O ile w aerozolach do przemiany takiej dochodzi w ciągu sekund, dzięki czemu wirusy mogą przeżyć, to w większych kroplach proces ten zachodzi wolnej i zanim dojdzie do chroniącego wirusy przejścia fazowego, patogeny mogą zginąć.
Naukowcy sądzą, że kluczowym elementem dla zdolności przeżycia wirusów, które wydostały się z dróg oddechowych, jest skład organiczny kropli i aerozoli. Ten zaś może zależeć od choroby i stopnia jej zaawansowania. Następnym etapem prac nad tym zagadnieniem powinno być systematyczne sprawdzenie składu różnych kropli oraz wirusów w nich obecnych, co pozwoli zrozumieć, jak działa proces dezaktywacji wirusów w powietrzu, mówi Davis.
Zdaniem eksperta od aerozoli, Petera Raynora z University of Minnesota, badania takie można będzie w praktyce wykorzystać np. zapewniając odpowiedni poziom wilgotności powietrza w budynkach w zimie, nie tylko dla komfortu ludzi, ale również po to, by stworzyć najmniej korzystne warunki dla przetrwania wirusów.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.