Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Zespół profesor Clary Urzì z Uniwersytetu w Mesynie odkrył dwa nowe gatunki bakterii, które żyją sobie spokojnie na ścianach katakumb świętego Kaliksta w Rzymie (Journal of Systematic and Evolutionary Microbiology).

Kompleks podziemnych grobowców nazwano od imienia Kaliksta I, który zasiadał na Stolicy Apostolskiej w latach 217-222. Przyszły następca św. Piotra miał się nimi opiekować z polecenia biskupa Rzymu Zefiryna. W miarę upływu lat system katakumb bardzo się rozrósł. Groby zlokalizowano na kilku poziomach. Pochowano tu wielu papieży z III wieku, dlatego też odkrywca nekropolii, Giovanni Battista de Rossi, nazwał ją Małym Watykanem.

Na zmurszałych ścianach katakumb odkryliśmy dwa nowe gatunki bakterii, należące do rodzaju Kribbella. Myślimy, że to one odpowiadają za obserwowane zniszczenia.

Miejmy nadzieję, że dokładne ich zbadanie pozwoli opracować nową metodę ochrony zabytków przed uszkodzeniem. Nieznane dotąd mikroby można też wykorzystać do czegoś pożytecznego, ponieważ są w stanie wytwarzać enzymy i antybiotyki. Fakt, że przedstawicieli dwóch gatunków bakterii znaleziono bardzo blisko siebie, świadczy o tym, iż nawet niewielkie zmiany w mikrośrodowisku prowadzą do niezależnej ewolucji.

Rodzaj Kribbella po raz pierwszy opisano zaledwie 9 lat temu, ale od tego czasu scharakteryzowano już kilku jego reprezentantów. Są oni rozrzuceni po całym świecie, od Afryki Południowej po Niemcy. Teraz do stale wydłużającej się listy dopisano Kribbella catacumbae i Kribbella sancticallisti.

Share this post


Link to post
Share on other sites
Guest tymeknafali

Hmmm... coraz ciekawsze życie znajdują, pamiętam jak oglądałem film o jaskiniach w AM. PŁN. i żyjących w niej ekstremo fitach. To dopiero ciekawe żyjątka.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Międzynarodowy zespół naukowy stworzył wielką bazę danych wszystkich znanych genomów bakteryjnych obecnych w mikrobiomie ludzkich jelit. Baza umożliwia specjalistom badanie związków pomiędzy genami bakterii a proteinami i śledzenie ich wpływu na ludzkie zdrowie.
      Bakterie pokrywają nas z zewnątrz i od wewnątrz. Wytwarzają one proteiny, które wpływają na nasz układ trawienny, nasze zdrowie czy podatność na choroby. Bakterie są tak bardzo rozpowszechnione, że prawdopodobnie mamy na sobie więcej komórek bakterii niż komórek własnego ciała. Zrozumienie wpływu bakterii na organizm człowieka wymaga ich wyizolowania i wyhodowania w laboratorium, a następnie zsekwencjonowania ich DNA. Jednak wiele gatunków bakterii żyje w warunkach, których nie potrafimy odtworzyć w laboratoriach.
      Naukowcy, chcąc zdobyć informacje na temat tych gatunków, posługują się metagenomiką. Pobierają próbkę interesującego ich środowiska, w tym przypadku ludzkiego układu pokarmowego, i sekwencjonują DNA z całej próbki. Następnie za pomocą metod obliczeniowych rekonstruują indywidualne genomy tysięcy gatunków w niej obecnych.
      W ubiegłym roku trzy niezależne zespoły naukowe, w tym nasz, zrekonstruowały tysiące genomów z mikrobiomu jelit. Pojawiło się pytanie, czy zespoły te uzyskały porównywalne wyniki i czy można z nich stworzyć spójną bazę danych, mówi Rob Finn z EMBL's European Bioinformatics Institute.
      Naukowcy porównali więc uzyskane wyniki i stworzyli dwie bazy danych: Unified Human Gastrointestinal Genome i Unified Gastrointestinal Protein. Znajduje się w nich 200 000 genomów i 170 milionów sekwencji protein od ponad 4600 gatunków bakterii znalezionych w ludzkim przewodzie pokarmowym.
      Okazuje się, że mikrobiom jelit jest nie zwykle bogaty i bardzo zróżnicowany. Aż 70% wspomnianych gatunków bakterii nigdy nie zostało wyhodowanych w laboratorium, a ich rola w ludzkim organizmie nie jest znana. Najwięcej znalezionych gatunków należy do rzędu Comentemales, który po raz pierwszy został opisany w 2019 roku.
      Tak olbrzymie zróżnicowanie Comentemales było wielkim zaskoczeniem. To pokazuje, jak mało wiemy o mikrobiomie jelitowym. Mamy nadzieję, że nasze dane pozwolą w nadchodzących latach na uzupełnienie luk w wiedzy, mówi Alexancre Almeida z EMBL-EBI.
      Obie imponujące bazy danych są bezpłatnie dostępne. Ich twórcy uważają, że znacznie się one rozrosną, gdy kolejne dane będą napływały z zespołów naukowych na całym świecie. Prawdopodobnie odkryjemy znacznie więcej nieznanych gatunków bakterii, gdy pojawią się dane ze słabo reprezentowanych obszarów, takich jak Ameryka Południowa, Azja czy Afryka. Wciąż niewiele wiemy o zróżnicowaniu bakterii pomiędzy różnymi ludzkimi populacjami, mówi Almeida.
      Niewykluczone, że w przyszłości katalogi będą zawierały nie tylko informacje o bakteriach żyjących w naszych jelitach, ale również na skórze czy w ustach.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W budownictwie od dawna wykorzystuje się materiały pochodzenia biologicznego, np. drewno. Gdy się ich używa, nie są już jednak żywe. A gdyby tak stworzyć żyjący budulec, który jest w stanie się rozrastać, a przy okazji ma mniejszy ślad węglowy? Naukowcy nie poprzestali na zadawaniu pytań i zabrali się do pracy, dzięki czemu uzyskali beton i cegły z bakteriami.
      Zespół z Uniwersytetu Kolorado w Boulder podkreśla, że skoro udało się utrzymać przy życiu pewną część bakterii, żyjące, i to dosłownie, budynki nie są wcale tylko i wyłącznie pieśnią przyszłości.
      Pewnego dnia takie struktury będą mogły, na przykład, same zasklepiać pęknięcia, usuwać z powietrza niebezpieczne toksyny, a nawet świecić w wybranym czasie.
      Na razie technologia znajduje się w powijakach, ale niewykluczone, że kiedyś żyjące materiały poprawią wydajność i ekologiczność produkcji materiałów budowlanych, a także pozwolą im wyczuwać i wchodzić w interakcje ze środowiskiem - podkreśla Chelsea Heveran.
      Jak dodaje Wil Srubar, obecnie wytworzenie cementu i betonu do konstruowania dróg, mostów, drapaczy chmur itp. generuje blisko 6% rocznej światowej emisji dwutlenku węgla.
      Wg Srubara, rozwiązaniem jest "zatrudnienie" bakterii. Amerykanie eksperymentowali z sinicami z rodzaju Synechococcus. W odpowiednich warunkach pochłaniają one CO2, który wspomaga ich wzrost, i wytwarzają węglan wapnia (CaCO3).
      Naukowcy wyjaśnili, w jaki sposób uzyskali LBMs (od ang. living building material, czyli żyjący materiał), na łamach pisma Matter. Na początku szczepili piasek żelatyną, pożywkami oraz bakteriami Synechococcus sp. PCC 7002. Wybrali właśnie żelatynę, bo temperatura jej topnienia i przejścia żelu w zol wynosi ok. 37°C, co oznacza, że jest kompatybilna z temperaturami, w jakich sinice mogą przeżyć. Poza tym, schnąc, żelatynowe rusztowania wzmacniają się na drodze sieciowania fizycznego. LBM trzeba schłodzić, by mogła się wytworzyć trójwymiarowa hydrożelowa sieć, wzmocniona biogenicznym CaCO3.
      Przypomina to nieco robienie chrupiących ryżowych słodyczy, gdy pianki marshmallow usztywnia się, dodając twarde drobinki.
      Akademicy stworzyli łuki, kostki o wymiarach 50x50x50 mm, które były w stanie utrzymać ciężar dorosłej osoby, i cegły wielkości pudełka po butach. Wszystkie były na początku zielone (sinice to fotosyntetyzujące bakterie), ale stopniowo brązowiały w miarę wysychania.
      Ich plusem, poza wspomnianym wcześniej wychwytem CO2, jest zdolność do regeneracji. Kiedy przetniemy cegłę na pół i uzupełnimy składniki odżywcze, piasek, żelatynę oraz ciepłą wodę, bakterie z oryginalnej części wrosną w dodany materiał. W ten sposób z każdej połówki odrośnie cała cegła.
      Wyliczenia pokazały, że w przypadku cegieł po 30 dniach żywotność zachowało 9-14% kolonii bakteryjnych. Gdy bakterie dodawano do betonu, by uzyskać samonaprawiające się materiały, wskaźnik przeżywalności wynosił poniżej 1%.
      Wiemy, że bakterie rosną w tempie wykładniczym. To coś innego niż, na przykład, drukowanie bloku w 3D lub formowanie cegły. Gdybyśmy mogli uzyskiwać nasze materiały [budowlane] na drodze biologicznej, również bylibyśmy w stanie produkować je w skali wykładniczej.
      Kolejnym krokiem ekipy jest analiza potencjalnych zastosowań platformy materiałowej. Można by dodawać bakterie o różnych właściwościach i uzyskiwać nowe materiały z funkcjami biologicznymi, np. wyczuwające i reagujące na toksyny w powietrzu.
      Budowanie w miejscach, gdzie zasoby są mocno ograniczone, np. na pustyni czy nawet na innej planecie, np. na Marsie? Czemu nie. W surowych środowiskach LBM będą się sprawować szczególnie dobrze, ponieważ do wzrostu wykorzystują światło słoneczne i potrzebują bardzo mało materiałów egzogennych. [...] Na Marsa nie zabierzemy ze sobą worka cementu. Kiedy wreszcie się tam wyprawimy, myślę, że naprawdę postawimy na biologię.
      Badania sfinansowała DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych).

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Podczas syntezy grafenu wykorzystuje się proces chemicznej redukcji tlenku grafenu (GO). Wymaga on wystawienia GO na działanie hydrazyny. Ten sposób produkcji ma jednak poważne wady, które czynią jego skalowanie bardzo trudnym. Opary hydrazyny są bowiem niezwykle toksyczne, zatem produkcja na skalę przemysłową byłaby niebezpieczna zarówno dla ludzi jak i dla środowiska naturalnego.
      Naukowcy z japońskiego Uniwersytetu Technologicznego Toyohashi zaprezentowali bezpieczne, przyjazne dla środowiska rozwiązanie problemu. Zainspirowały ich wcześniejsze badania wskazujące, że tlenek grafenu może działać na bakterie jak akceptor elektronów. Wskazuje to, że bakterie w procesie oddychania lub transportu elektronów mogą redukować GO.
      Japońscy uczeni wykorzystali mikroorganizmy żyjące na brzegach pobliskiej rzeki. Badania przeprowadzone przy wykorzystaniu zjawiska Ramana wykazały, że obecność bakterii rzeczywiście doprowadziła do zredukowania tlenku grafenu. Zdaniem Japończyków pozwala to na opracowanie taniej, bezpiecznej i łatwo skalowalnej przemysłowej metody produkcji grafenu o wysokiej jakości.
    • By KopalniaWiedzy.pl
      Pasożytnicze osy (parazytoidy) składają jaja wewnątrz różnych organizmów, m.in. mszycy burakowej (Aphis fabae). Okazuje się jednak, że wprowadzając do środka jaja, mogą też nieświadomie zaszczepić ofiarę na swój własny gatunek. Nakłuwając powłoki ciała różnych pluskwiaków, przenoszą bowiem między nimi bakterie symbiotyczne, które zabijają larwy os.
      Korzystne dla mszyc bakterie Hamiltonella defensa czy Regiella insecticola są najczęściej przekazywane z matki na potomstwo, możliwe jest jednak rozpowszechnianie wśród niespokrewnionych osobników. Jedna z dróg to transfer między partnerami seksualnymi. Teraz szwajcarscy naukowcy Lukas Gehrer i Christoph Vorburger wykazali, że nakłuwając najpierw nosiciela bakterii, a potem mszycę pozbawioną fakultatywnych endosymbiontów, pasożytnicze osy rozprowadzają pożyteczne mikroorganizmy również w pokoleniach pluskwiaków, które rozmnażają się przez dzieworództwo.
      Gehrer i Vorburger pozwolili dwóm gatunkom parazytoidów zaatakować najpierw A. fabae z endosymbiontami, a później grupę niewyposażoną w mikrosojuszników. Osy nakłuwały wiele mszyc. Przeżyło tylko 38%; 9% przejęło przenoszone przez osy bakterie.
      Panowie tłumaczą, że pokładełko samicy (narząd do składania jaj) wydaje się działać jak brudna igła. Z wiadomych względów transfer endosymbiontów jest niekorzystny z punktu widzenia os, niewykluczone więc, że wykształciły one jakieś mechanizmy zabezpieczające przed tym mechanizmem. Pozwoliłoby to wyjaśnić, czemu zachodzi on tak rzadko.
      Szwajcarzy testowali też ektopasożytnicze roztocze, ale nie zauważyli, by w jakikolwiek sposób przyczyniały się one do poziomej transmisji endosymbiotycznych bakterii, których obecność stwierdzano za pomocą reakcji łańcuchowej polimerazy (PCR). Podczas eksperymentów osy wylęgające się z mszyc zainfekowanych bakteryjnymi endosymbiontami nie przenosiły ich na żywicieli swojego potomstwa.
    • By KopalniaWiedzy.pl
      W Nowym Jorku odkryto nowy gatunek żab łąkowych (ang. meadow/leopard frogs) o dziwnym zawołaniu. Cóż, najciemniej jest w końcu pod latarnią, a tych w Wielkim Jabłku nie brakuje...
      Przez lata naukowcy mylili nowo opisaną żabę z bardziej rozpowszechnionym gatunkiem. Podczas gdy regularnie odkrywa się nowe gatunki w lasach deszczowych, natrafienie na jakiś w bajorkach i terenach podmokłych Staten Island, części Nowego Jorku położonej na stałym lądzie i North Jersey jest sporym zaskoczeniem. Zgadzają się co do tego wszyscy autorzy artykułu opublikowanego na łamach Molecular Phylogenetics and Evolution, na co dzień pracownicy Uniwersytetu Kalifornijskiego w Los Angeles, Davis, Rutgers University i University of Alabama.
      To pokazuje, że nawet w największych miastach USA nadal istnieją ważne gatunki czekające na odkrycie, które mogą zniknąć bez ochrony - zaznacza prof. Brad Shaffer z UCLA.
      Naukowcy sądzą, że kiedyś żaba mieszkała na Manhattanie. Teraz środek jej obszaru występowania stanowi Yankee Stadium w Bronksie. Gdy inni naukowcy usłyszeli od Jeremy'ego Feinberga z Rutgers University o żabach wydających dziwne dźwięki, początkowo sądzili, że to nietypowo zachowujące się Lithobates sphenocephalus (in. Rana sphenocephala) czy Rana pipiens albo jakaś hybryda tych gatunków. Szybko jednak zaczęły spływać dane, które świadczyły o czymś zupełnie innym - to nie wybryki znanych, ale całkiem nowa żaba. Będący herpetologiem Feinberg opisał dźwięki wydawane przez nowojorską żabę jako powtarzalne kumkanie, podczas gdy inne żaby łąkowe wydają raczej przeciągłe chrapnięcia lub "chichoczą". "To przykład gatunku kryptycznego [bliźniaczego], który ukrywa się w cieniu drugiego, gdyż podobieństwo sprawia, że nie da się ich rozróżnić wzrokowo [na podstawie morfologii]. Dzięki genetyce molekularnej ludzie wyłapują coraz to nowe gatunki, które inaczej zostałyby zignorowane".
      Amerykanie porównali mitochondrialne DNA badanej żaby i wszystkich innych żab łąkowych z regionu. Po testach mtDNA przyszedł czas na analizę DNA jądrowego (nDNA). W ten sposób stwierdzono, że to zupełnie nowy gatunek, który wkrótce zostanie nazwany. Trzeba przyznać, że praca dyplomowa, którą na tej podstawie przygotowała główna autorka studium Cathy Newman, musi być imponująca.
      Znaleziono rozproszone populacje w North Jersey, południowo-wschodnim rejonie lądowego Nowego Jorku i na Staten Island. Dowody wskazują, że kiedyś żaba była powszechna na Long Island i pobliskich rejonach, ale wyginęła tam w ostatnich dekadach.
×
×
  • Create New...