Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

fantazja czlowieka nie ma granic a ten temat jest taki fascynujacy, sam gram w gre gdzie wszystko zaczyna sie od upadku skalki na planete - i tak sie zaczyna zycie, etap komorkowy, pozniej cala ewolucja, rozwoj fizyczny i cywilizacyjny - az do fazy podbijania kosmosu i odnajdowania innych ras...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Badania DNA ludzi zabitych w Pompejach przez Wezuwiusza pokazały, jak błędne były czynione przez wieki założenia. Okazuje się, że rzekome rodziny nie były rodzinami, zmarłym źle przyporządkowano płeć. Okazało się ponadto, że ludność Pompejów w większości stanowili emigranci ze wschodnich regionów Morza Śródziemnego.
      Erupcja Wezuwiusza nie dała szans na ucieczkę wielu mieszkańcom miasta. Ci, którzy przeżyli pierwszą jej fazę, zabiły lawiny piroklastyczne, szybko przemieszczające się chmury gorących gazów i popiołów. Pokryły one ciała ofiar grubą warstwą, na zawsze zachowując ich kształt.
      Od XIX wieku naukowcy wykonują w Parco Archeologico di Pompei odlewy ciał, wstrzykując gips z puste miejsca, pozostałe po rozłożeniu się tkanek. Uczonym, którzy prowadzili zabiegi konserwatorskie, udało się pozyskać DNA z pofragmentowanych szkieletów zatopionych w 14 z 86 tych odlewów. To zaś pozwoliło na określenie płci zmarłych, ich pochodzenia oraz związków genetycznych pomiędzy nimi. I pokazało, jak błędne były dotychczasowe założenia, które opierano na wyglądzie i pozycji ciał.
      Na przykład w Domu Złotej Bransolety, jedynym miejscu z którego mamy DNA całej grupy ciał, okazało się, że cztery osoby, które interpretowano jako rodzice z dwójką dzieci, nie były w żaden sposób ze sobą spokrewnione, mówi profesor David Caramelli z Uniwersytetu we Florencji. To nie jedyne błędne przypuszczenia, zweryfikowane przez DNA.
      Innym znanym przykładem jest dorosła osoba nosząca złotą bransoletę i trzymająca dziecko. Tradycyjnie interpretowano je jako matkę z dzieckiem. Okazało się, że to mężczyzna i dziecko, którzy nie byli ze sobą spokrewnieni. Mamy też dwie obejmujące się osoby, które interpretowano jako matka z córką lub siostry. Teraz wiemy, że jedna z tych osób to mężczyzna, dodaje David Reich z Uniwersytetu Harvarda.
      Ponadto wszyscy mieszkańcy Pompejów, w przypadku których udało się zdobyć dane z całego genomu, okazali się w głównej mierze potomkami emigrantów ze wschodnich regionów Śródziemiomorza. Pochodzenie takie widoczne jest też w genomach współczesnych im mieszkańców Rzymu, co tylko pokazuje, jak kosmopolityczne było Imperium Romanów w tych czasach.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Jeszcze do niedawna naukowcy potrafili określi miejsce pochodzenia jedynie 6% meteorytów znalezionych na Ziemi. Teraz naukowcy z francuskiego Narodowego Centrum Badań Naukowych (CNRS), Europejskiego Obserwatorium Południowego i czeskiego Uniwersytetu Karola wykazali, że 70% wszystkich znalezionych na naszej planecie meteorytów pochodzi z trzech młodych rodzin asteroid.
      Rodziny te to wyniki trzech zderzeń, do których doszło w głównym pasie asteroid 5,8, 7,5 oraz 40 milionów lat temu. Badacze określili też źródło innych meteorytów, dzięki czemu możemy teraz zidentyfikować miejsce pochodzenia ponad 90% skał, które z kosmosu spadły na Ziemię. Wyniki badań zostały opublikowane w trzech artykułach. Jeden ukazał się łamach Astronomy and Astrophysics, a dwa kolejne na łamach Nature.
      Wspomniane rodziny asteroid to – od najmłodszej do najstarszej – Karin, Koronis i Massalia. Wyróżnia się Massalia, która jest źródłem 37% meteorytów. Dotychczas na Ziemi odnaleziono podczas 700 000 okruchów z kosmosu. Jedynie 6% z nich zidentyfikowano jako achondryty pochodzące z Księżyca, Marsa lub Westy, jednego z największych asteroid głównego pasa. Źródło pozostałych 94%, z których większość do chondryty, pozostawało nieznane.
      Jak to jednak możliwe, że źródłem większości znalezionych meteorytów są młode rodziny asteroid? Autorzy badań wyjaśniają, że rodziny takie charakteryzują się dużą liczbą niewielkich fragmentów powstałych w wyniku niedawnych kolizji. Ta obfitość zwiększa prawdopodobieństwo kolejnych zderzeń, co w połączeniu z duża mobilnością tych szczątków, powoduje, że mogą zostać wyrzucone z głównego pasa asteroid, a część z nich poleci w kierunku Ziemi. Starsze rodziny asteroid nie są tak liczne. Przez wiele milionów lat mniejsze fragmenty, ale na tyle duże, że mogłyby spaść na Ziemię, zniknęły w wyniku kolejnych zderzeń i ucieczki z pasa asteroid.
      Określenie pochodzenia większości meteorytów było możliwe dzięki teleskopowym badaniom składu większości rodzin asteroid w głównym pasie oraz zaawansowanymi symulacjami komputerowymi, podczas których badano dynamikę tych rodzin.
      Autorzy badań określili też pochodzenie wielkich asteroid, takich jak Ryugu czy Bennu. Okazało się, że pochodzą one od tego samego przodka co rodzina asteroid Polana.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Jedno z ważnych pytań o początki życia brzmi: w jaki sposób cząstki RNA swobodnie przemieszczające się w pierwotnej zupie zostały opakowane w chronione błoną komórki. Odpowiedź na to pytanie zaproponowali właśnie na łamach Science Advances inżynierowie i chemicy z Uniwersytetów w Chicago i w Houston oraz Jack Szostak, laureat Nagrody Nobla w dziedzinie fizjologii lub medycyny. W swoim artykule pokazują, jak przed 3,8 miliardami lat krople deszczu mogły ochronić pierwsze protokomórki i umożliwić powstanie złożonych organizmów żywych.
      Uczeni przyjrzeli się koacerwatom, dużym grupom cząstek, samoistnie tworzącym się w układach koloidalnych (niejednorodnych mieszaninach). Zachowanie koacerwatów można porównać do zachowania kropli oleju w wodzie.
      Już dawno pojawiła się hipoteza, że nie posiadające błon mikrokrople koacerwatów mogły być modelowymi protokomórkami, gdyż mogą rosnąć, dzielić się i gromadzić wewnątrz RNA. Jednak błyskawiczna wymiana RNA pomiędzy koacerwatami, ich szybkie łączenie się, zachodzące w ciągu minut oznaczają, że poszczególne krople nie są w stanie utrzymać swojej odrębności genetycznej. To zaś oznacza, że ewolucja darwinowska nie jest możliwa, a populacja takich protokomórek byłaby narażona na błyskawiczne załamanie w wyniku rozprzestrzeniania się pasożytniczego RNA, czytamy w artykule. Innymi słowy każda kropla, która zawierałaby mutację potencjalnie użyteczną na drodze do powstania życia, błyskawicznie wymieniałaby swoje RNA z innymi RNA, nie posiadającymi takich pożytecznych mutacji. W bardzo szybkim tempie wszystkie krople stałyby się takie same. Nie byłoby różnicowania, konkurencji, a zatem nie byłoby ewolucji i nie mogłoby powstać życie.
      Jeśli dochodzi do ciągłej wymiany molekuł czy to między kroplami czy między komórkami i po krótkim czasie wszystkie one wyglądają tak samo, to nie pojawi się ewolucja. Będziemy mieli grupę klonów, wyjaśnia Aman Agrawal z Pritzker School of Molecular Engineering na University of Chicago.
      Nauka od dawna zastanawia się, co było pierwszą molekułą biologiczną. To problem kury i jajka. DNA koduje informacje, ale nie przeprowadza żadnych działań. Białka przeprowadzają działania, ale nie przenoszą informacji. Badacze tacy jak Szostak wysunęli hipotezę, że pierwsze było RNA. To molekuła jak DNA, zdolna do kodowania informacji, ale zawija się jak białko.
      RNA było więc kandydatem na pierwszy materiał biologiczny, a koacerwaty kandydatami na pierwsze protokomórki. Wszystko wydawało się dobrze układać, aż w 2014 roku Szostak opublikował artykuł, w którym informował, że wymiana materiału pomiędzy kroplami koacerwatów zachodzi zbyt szybko. Możesz stworzyć różnego rodzaju krople koacerwatów, ale nie zachowają one swojej unikatowej odrębności. Zbyt szybko będą wymieniały RNA. To był problem z którym przez długi czas nie potrafiono sobie poradzić, mówi Szostak.
      W naszym ostatnim artykule wykazaliśmy, że problem ten można przynajmniej częściowo przezwyciężyć, jeśli koacerwaty zamkniemy w wodzie destylowanej – na przykład wodzie deszczowej czy jakiejś innej słodkiej wodzie. W kroplach takich pojawia się rodzaj wytrzymałej błony, która ogranicza wymianę zawartości, dodaje uczony.
      Na trop tego zjawiska naukowcy wpadli, gdy Aman Agrawal był na studiach doktoranckich. Badał zachowanie koacerwatów poddanych działaniu pola elektrycznego w destylowanej wodzie. Jego badania nie miały nic wspólnego z początkami życia. Interesował go fascynujący materiał z inżynieryjnego punktu widzenia. Manipulował napięciem powierzchniowym, wymianą soli, molekuł itp. Chciał w swojej pracy doktorskiej badać podstawowe właściwości koacerwatów.
      Pewnego dnia Agrawal jadł obiad z promotorem swojej pracy magisterskiej, profesorem Alamgirem Karimem oraz jego starym znajomym, jednym ze światowych ekspertów inżynierii molekularnej, Matthew Tirrellem. Tirrell zaczął się zastanawiać, jak badania Agrawala nad wpływem wody destylowanej na koacerwaty mogą się mieć do początków życia na Ziemi. Zadał swoim rozmówcom pytanie, czy 3,8 miliarda lat temu na naszej planecie mogła istnieć woda destylowana. Spontanicznie odpowiedziałem „deszczówka”! Oczy mu się zaświeciły i od razu było widać, że jest podekscytowany tym pomysłem. Tak połączyły się nasze pomysły, wspomina profesor Karim.
      Tirrell skontaktował Agrawla z Szostakiem, który niedawno rozpoczął na Uniwersytecie Chicagowskim nowy projekt badawczy, nazwany z czasem Origins of Life Initiative. Profesor Tirrel zadał Szostakowi pytanie: Jak sądzisz, skąd na Ziemi przed powstaniem życia mogła wziąć się woda destylowana. I Jack odpowiedział dokładnie to, co już usłyszałem. Że z deszczu.
      Szostak dostarczył Agrawalowi próbki DNA do badań, a ten odkrył, że dzięki wodzie destylowanej transfer RNA pomiędzy kroplami koacerwatów znacząco się wydłużył, z minut do dni. To wystarczająco długo, że mogło dochodzić do mutacji, konkurencji i ewolucji. Gdy mamy populację niestabilnych protokomórek, będą wymieniały materiał genetyczny i staną się klonami. Nie ma tutaj miejsca na ewolucję w rozumieniu Darwina. Jeśli jednak ustabilizujemy te protokomórki tak, by przechowywały swoją unikatową informację wystarczająco długo, co najmniej przez kilka dni, może dojść do mutacji i cała populacja będzie ewoluowała, stwierdza Agrawal.
      Początkowo Agrawal prowadził swoje badania z komercyjnie dostępną laboratoryjną wodą destylowaną. Jest ona wolna od zanieczyszczeń, ma neutralne pH. Jest bardzo odległa od tego, co występuje w naturze. Dlatego recenzenci pisma naukowego, do którego miał trafić artykuł, zapytali Agrawala, co się stanie, jeśli woda będzie miała odczyn kwasowy, będzie bardziej podobna do tego, co w naturze.
      Naukowcy zebrali więc w Houston deszczówkę i zaczęli z nią eksperymentować. Gdy porównali wyniki badań z wykorzystaniem naturalnej deszczówki oraz wody destylowanej laboratoryjnie, okazało się, że są one identyczne. W obu rodzajach wody panowały warunki, które pozwalałyby na ewolucję RNA wewnątrz koacerwatów.
      Oczywiście skład chemiczny deszczu, który pada obecnie w Houston, jest inny, niż deszczu, który padał na Ziemi przed 3,8 miliardami lat. To samo zresztą można powiedzieć o modelowych protokomórkach. Autorzy badań dowiedli jedynie, że taki scenariusz rozwoju życia jest możliwy, ale nie, że miał miejsce.
      Molekuły, których użyliśmy do stworzenia naszych protokomórek to tylko modele do czasu, aż znajdziemy bardziej odpowiednie molekuły. Środowisko chemiczne mogło się nieco różnić, ale zjawiska fizyczne były takie same, mówi Agrawal.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Niedźwiedzie polarne są zagrożone przez zmniejszający się zasięg lodu morskiego w Arktyce, na którym spędzają większość życia. Naukowcy chcieliby badać i nadzorować ten gatunek, by go ocalić. Uczeni z University of Idaho znaleźli unikatową nieinwazyjną metodę identyfikowania niedźwiedzi polarnych. Zamiast stresować je śledząc za pomocą śmigłowców, strzelać środkami usypiającymi i zakładać urządzenia namierzające, amerykańscy uczeni pozyskują DNA niedźwiedzi z... odciśniętych na śniegu śladów łap.
      Na łamach Frontiers in Conservation Science profesor Lisett Waits i badaczka Jennifer Adams z Idaho, we współpracy ze specjalistami z North Slope Borough Department of Wildlife oraz Alaska Department of Fish and Game opisali, w jaki sposób można pozyskać ze śniegu komórki naskórka niedźwiedzi.
      Naukowcy najpierw zeskrobywali cienką warstwę śniegu ze świeżych śladów, a następnie w laboratorium zbierali komórki i analizowali ich DNA. W ten sposób zbierali unikatowe informacje o każdym z osobników. We wstępnej fazie badan pobrali 15 próbek. W 2 z nich nie znaleziono DNA niedźwiedzia, w 11 zaś stwierdzono jego obecność. Na razie technika ta znajduje się w fazie eksperymentalnej i wymaga dopracowania, jednak już w tej chwili widać, że jest nieinwazyjnym i efektywnym kosztowo sposobem badania dzikich niedźwiedzi polarnych.
      O ile nam wiadomo, to pierwszy przypadek identyfikowania niedźwiedzi polarnych czy jakichkolwiek innych zwierząt na podstawie pozostawionego w środowisku DNA zebranego ze śniegu, cieszy się Adams.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wytrzymałe i lekkie materiały są niezwykle pożądane w przemyśle i życiu codziennym. Mogą one udoskonalić wiele maszyn i przedmiotów, od samochodów przez implanty medyczne po kamizelki kuloodporne. Niestety wytrzymałość i niska masa zwykle nie idą w parze. Poszukujący rozwiązania tego problemu naukowcy z University of Connecticut, Columbia University i Brookhaven National Laboratory wykorzystali DNA i szkło. Dla tej gęstości jest to najbardziej wytrzymały znany materiał, mówi Seok-Woo Lee z UConn.
      Żelazo może wytrzymać nacisk do 7 ton na centymetr kwadratowy, jest jednak bardzo gęste i ciężkie. Znamy metale, jak tytan, które są lżejsze i bardziej wytrzymałe. Potrafimy też tworzyć stopy metali o jeszcze mniejszej masie i jeszcze większej wytrzymałości. Ma to bardzo praktyczne zastosowania. Na przykład najlepszym sposobem na zwiększenie zasięgu samochodu elektrycznego nie jest dokładanie akumulatorów, a zmniejszenie masy pojazdu. Problem w tym, że tradycyjne techniki metalurgiczne osiągnęły w ostatnich latach kres swoich możliwości, naukowcy szukają więc innych niż metale wytrzymałych i lekkich materiałów.
      Szkło, wbrew temu co sądzimy, jest wytrzymałym materiałem. Kostka szkła o objętości 1 cm3 może wytrzymać nacisk nawet 10 ton. Pod jednym warunkiem – szkło nie może posiadać wad strukturalnych. Zwykle pęka ono właśnie dlatego, że już istnieją w nim niewielkie pęknięcia, zarysowania czy brakuje atomów w jego strukturze. Wytworzenie dużych kawałków szkła pozbawionego wad jest niezwykle trudne. Naukowcy potrafią jednak tworzyć niewielkie takie kawałki. Wiedzą na przykład, że kawałek szkła o grubości mniejszej niż 1 mikrometr jest niemal zawsze bez wad. A jako że szkło jest znacznie mniej gęste niż metale czy ceramika, szklane struktury zbudowane kawałków szkła o nanometrowej wielkości powiny być lekkie i wytrzymałe.
      Dlatego też Amerykanie wykorzystali DNA, które posłużyło za szkielet, i pokryli je niezwykle cienką warstwą szkła o grubości kilkuset atomów. Szkło pokryło jedynie nici DNA, pozostawiając sporo pustych przestrzeni. Szkielet z DNA dodatkowo wzmocnił niewielką, pozbawioną wad, szklaną strukturę. A jako że spora jej część to puste przestrzenie, dodatkowo zmniejszono masę całości. W ten sposób uzyskano materiał, który ma 4-krotnie większą wytrzymałość od stali, ale jest 5-krotnie mniej gęsty. To pierwszy tak lekki i tak wytrzymały materiał.
      Możliwość projektowania i tworzenia trójwymiarowych nanomateriałów przy użyciu DNA otwiera niezwykłe możliwości przed inżynierią. Jednak potrzeba wielu badań, zanim możliwości te wykorzystamy w konkretnych technologiach, stwierdza Oleg Gang z Columbia University.
      Teraz naukowcy prowadzą eksperymenty z zastąpieniem szkła ceramiką opartą na węglikach. Planują przetestować różne struktury DNA i różne materiały, by znaleźć takie o najlepszych właściwościach.
      Jestem wielkim fanem Iron Mana. Zawsze zastanawiałem się, jak stworzyć lepszą zbroję dla niego. Musi być one bardzo lekka, by mógł szybciej latać i bardzo wytrzymała, by chroniła go przed atakami wrogów. Nasz nowy materiał jest pięciokrotnie lżejszy i czterokrotnie bardziej wytrzymały od stali. Nasze szklane nanostruktury byłyby lepsze dla Iron Mana niż jakikolwiek inny materiał, stwierdził Lee.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...