Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Zmiany monsunów zagrażają „trzeciemu biegunowi” i bytowi ponad 1,5 miliarda ludzi
dodany przez
KopalniaWiedzy.pl, w Nauki przyrodnicze
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Mamy coraz mniejsze opady śniegu, coraz krótszy czas zalegania pokrywy śnieżnej i wzrost sumy opadów zimą. W pozostałych porach roku opady są z jednej strony coraz rzadsze, a z drugiej coraz bardziej intensywne. Mamy więc rozwijającą się suszę w wyniku niedoboru opadów, która „przerywana” jest chwilowo wanną wody z nieba. Dochodzi do okresowego zalania danego obszaru, po którym znów wracamy do rozwoju suszy. Wzrost temperatury to wzrost parowania (ewapotranspiracji), który zwiększa się szybciej niż trend wzrostu sumy opadów. W efekcie w ostatnich kilkunastu latach mamy rozwijającą się suszę przerywaną lokalnymi podtopieniami lub powodziami.
Naszym gościem jest dr Sebastian Szklarek, ekohydrolog z Europejskiego Regionalnego Centrum Ekohydrologii Polskiej Akademii Nauk w Łodzi, popularyzator nauki i założyciel bloga Świat Wody. Zawodowo związany z tematyką jakości wód oraz zależności pomiędzy procesami biologicznymi (ekologia) i procesami abiotycznymi (hydrologia) zachodzącymi w wodach powierzchniowych. Popularyzatorsko porusza także zagadnienia związane z ilością wody, głównie w obszarze suszy, oraz inne zagadnienia związane z zasobami wody, głównie dotyczącymi naszego kraju.
Susza czy powódź? Czego powinniśmy się obawiać? Czy te dwa zjawiska się nie wykluczają?
Powódź jest zjawiskiem, które odczuwamy bardziej bezpośrednio, daje widoczne straty materialne, a czasem i ludzkie. Susza jest zjawiskiem bardziej rozciągniętym w czasie i bezpośrednio dotyka przede wszystkim rolników, dlatego jako ogół społeczeństwa nie czujemy tego zjawiska tak bardzo jak powodzi, tym bardziej, że przecież odkręcamy kran i woda jest.
Powódź przychodzi nagle, jest jak nagła choroba czy wypadek. Susza to taka uśpiona choroba, rozwija się miesiącami czy latami, a wyjście z tej choroby nie zajmuje chwili – to trochę jak chorobami przewlekłymi lub niediagnozowanymi, których skutki odczuwamy po latach walki naszego ciała z nimi.
Te dwa zjawiska nie wykluczają się. W skali naszego kraju możemy mieć jednocześnie suszę i powódź. Tak było przy powodzi w 2024 – dorzecze Odry dotknięte powodzią, a północno-wschodnia część kraju suszą. Zresztą chwilę przed powodzią region południowo-zachodni też był dotknięty suszą.
Jak wyglądają polskie zasoby wodne i jak wpływa na nie globalne ocieplenie?
Są mokre. A tak na poważnie, warto spojrzeć na bilans wodny Polski. Po stronie przychodu mamy przede wszystkim opady (97%), a uzupełnieniem jest dopływ rzekami z państw sąsiednich (głównie na wschodzie). Po stronie rozchodu mamy główne straty na parowanie (70%), a reszta opuszcza nasz kraj odpływając rzekami do Morza Bałtyckiego (przeważająca część 30% rozchodu) lub do państw sąsiednich.
Patrząc na ten bilans i skutki zmiany klimatu, mamy zmiany w dwóch głównych składowych tego bilansu. Opady: mimo że średnioroczna suma opadów ma niewielką tendencję wzrostową, to zmienia się ich charakter i rozkład czasowy oraz przestrzenny. Mamy coraz mniejsze opady śniegu, coraz krótszy czas zalegania pokrywy śnieżnej i wzrost sumy opadów zimą. W pozostałych porach roku opady są z jednej strony coraz rzadsze, a z drugiej coraz bardziej intensywne. Mamy więc rozwijającą się suszę w wyniku niedoboru opadów, która „przerywana” jest chwilowo wanną wody z nieba. Dochodzi do okresowego zalania danego obszaru, po którym znów wracamy do rozwoju suszy. Wzrost temperatury to wzrost parowania (ewapotranspiracji), który zwiększa się szybciej niż trend wzrostu sumy opadów. W efekcie w ostatnich kilkunastu latach mamy rozwijającą się suszę przerywaną lokalnymi podtopieniami lub powodziami.
Jakie błędy w gospodarce wodnej wciąż są popełniane w Polsce?
Największym błędem jest ciągłe patrzenie na koniec rury, czyli myślenie o retencji w najniższych punktach krajobrazu – dolinach rzecznych. Patrząc na w miarę naturalny krajobraz, to 40% opadów zostaje w wierzchniej warstwie gleby, na powierzchni roślin i w roślinach – ta woda ma szansę krążyć w tzw. małym obiegu wody – w ciągu dnia paruje (wyższe temperatury), w nocy (ochłodzenie) skrapla się dając rosę, mgłę czy szron. Kolejna porcja opadów (ok. 50%) wsiąka do głębszych warstw gleby odtwarzając zasoby wód podziemnych i przepływem podziemnym stabilizuje przepływy w rzekach (60-70% wody w rzekach to zasilanie wodami podziemnymi). Pozostałe 10% to woda spływająca po powierzchni zgodnie z nachyleniem terenu. Różnorodne formy naszej działalności zaburzyły te proporcje naturalnego obiegu – skrajnym przypadkiem są uszczelnione powierzchnie miast, gdzie nawet ok. 90% opadów odpływa powierzchniowo (i kanalizacją deszczową) poza teren na który ten deszcz spadł.
Chcąc poprawić gospodarkę wodną, przeciwdziałając suszy i powodzi, powinniśmy realizować jak najwięcej działań pomagających przywrócić jak najbardziej naturalny obieg. Powinniśmy działać zgodnie z zasadą 3S (z ang. sink, slow and spread), która mówi o zatrzymywaniu opadów tam gdzie spadają, zapewnieniu ich infiltracji (wsiąkania do gleby), a nadmiar należy rozprowadzać po najbliższej okolicy i tam szukać miejsc infiltracji.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na południowo-wschodniej Alasce pojawiła się nowa wyspa. Prow Knob to niewielki szczyt, który w przeszłości był połączony z lądem za pomocą lodowca Alsek. Latem bieżącego roku lodowiec stracił kontakt ze szczytem, pozostawiając za sobą wyspę o powierzchni około 5 km2, otoczoną wodami jeziora Alsek. Na przedstawionych przez nas zdjęciach możecie porównać wygląd lodowca Alsek w 1984 roku i obecnie.
Jeszcze na początku XX wieku lodowiec Alsek kończył się około 5 kilometrów na zachód od Prow Knob, w miejscu znanym jako Gateway Knob. Jednak do połowy wieku wycofał się na wschód, wciąż obejmował Prow Knob. W sierpniu 1960 roku nad glacjolog Austin Post wykonał zdjęcia tego terenu. Prow Knob był wówczas nunatakiem – szczytem otoczonym zewsząd przez lądolód. To on nadał mu nazwę, gdyż kształt widoczny nad lodem przypominał dziób statku. Przed rokiem 1984 część Prow Knob leżała już nad wodą, jednak lodowiec Alsek miał wciąż kontakt z północnym ramieniem lodowca Grand Plateau. Zmieniło się to w 1999 roku. Po kolejnych ponad 2 dekadach cofania się lodowców na jeziorze Alsek pojawiła się nowa wyspa.
Od 1984 roku lodowiec Alsek wycofał się o ponad 5 kilometrów i nadal będzie się cofał, gdyż po utracie kontaktu z Prow Knob lodowiec jest mniej stabilny i bardziej podatny na cielenie się. Jednocześnie, w ciągu ostatnich 31 lat powierzchnia jeziora Alsek zwiększyła się z 45 do 75 kilometrów kwadratowych. W sumie trzy sąsiadujące ze sobą jeziora polodowcowe, Alsek, Harlequin i Grand Plateatu, zwiększyły ponad dwukrotnie swoją powierzchnię.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z University of Hawai'i ostrzegają, że do roku 2080 rosnący poziom oceanów zacznie zagrażać słynnym moai z Wyspy Wielkanocnej. Z artykułu opublikowanego na łamach Journal of Cultural Heritage dowiadujemy się, że za nieco ponad 50 lat poziom oceanów wzrośnie na tyle, że sezonowo fale będą dosięgały największej platformy ceremonialnej (ahu) na Wyspie, Ahu Tongariki, na której ustawionych jest 15 posągów, w tym najcięższe moai, jakie kiedykolwiek powstały na wyspie. Ponadto wody oceaniczne zagrożą 51 innym zabytkom.
Główny autor badań, doktorant Noah Paoa i jego zespół stworzyli szczegółowy wirtualny obraz wybrzeża i symulowali oddziaływanie fal morskich w różnych przewidywanych dla przyszłości scenariuszach wzrostu poziomu oceanów. Niestety, z naukowego punktu widzenia, wyniki naszej pracy nie są zaskakujące. Wiemy, że wzrost poziomu oceanów zagraża wybrzeżom na całym świecie. Nie pytaliśmy, czy dane miejsca zostaną zagrożone, ale kiedy i jak poważne będzie to zagrożenie. Odkrycie, że fale morskie mogą dosięgnąć Ahu Tongariki do roku 2080 pokazuje, że należy rozpocząć dyskusję na ten temat i zastanowić się nad planami na przyszłość, mówi uczony.
Wzrost poziomu oceanów to poważny problem dla wybrzeży na całym świecie oraz dla znajdującego się tam dziedzictwa kulturowego. Z podobnym problemem już w najbliższym czasie będą zmagały się i Hawaje i wszystkie inne wyspy Pacyfiku. Niebezpieczeństwo wisi nad świętymi miejscami, świątyniami czy cmentarzami.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Poszukując życia na innych planetach naukowcy skupiają się na wodzie. Jest ona niezbędna dla życia na Ziemi, zatem jej obecność – lub przynajmniej warunki pozwalające na jej obecność – jest uważana za warunek sine qua non możliwości występowania życia na innych planetach. Badacze z MIT, Politechniki Wrocławskiej oraz innych uczelni proponują na łamach PNAS, by za ciała niebieskie zdolne do utrzymania życia uznać też i takie, na których mogą występować ciecze jonowe. A mogą one powstawać w warunkach, w jakich woda w stanie ciekłym nie może istnieć. Jeśli autorzy najnowszych badań mają rację, to liczba potencjalnych miejsc istnienia życia w przestrzeni kosmicznej może być znacznie większa, niż uważamy. Oczywiście nie będzie to takie życie, jakie znamy z Ziemi.
Ciecze jonowe to substancje chemiczne składające się z jonów. To sole, które pozostają w stanie płynnym w temperaturze poniżej 100 stopni Celsjusza. Ciecze takie mają bardzo niską prężność par, co oznacza, że niemal się nie ulatniają.
Z badań, w których brał udział doktor Janusz Pętkowski z Wydziału Inżynierii Środowiska Politechniki Wrocławskiej, wynika, że ciecze jonowe mogą z łatwością powstawać ze składników, których obecność jest spodziewana na niektórych planetach i księżycach. Badacze wykazali, że mieszanina kwasu siarkowego i niektórych składników organicznych zawierających azot, prowadzi do utworzenia cieczy jonowej. Kwas siarkowy jest emitowany przez wulkany, a składniki organiczne z azotem wykrywamy na asteroidach czy planetach, więc mogą być szeroko rozpowszechnione.
Jak już wspomnieliśmy, ciecze jonowe mają niską prężność par, mogą powstawać i pozostawać stabilne przy wyższych temperaturach i niższym ciśnieniu atmosferycznym niż woda w stanie ciekłym. Zatem na tych ciałach niebieskich, na których woda nie może powstać lub się utrzymać, mogą istnieć ciecze jonowe. A, jak zauważają badacze, w cieczach takich niektóre biomolekuły – jak pewne białka – mogą być stabilne. Kierująca pracami zespołu badawczego doktor Rachana Agrawal zauważa, że jeśli w poszukiwaniu pozaziemskiego życia uwzględnimy ciecze jonowe, znacząco zwiększymy ekosferę, czyli obszar wokół gwiazd, w którym może istnieć życie.
Badania nad cieczami jonowymi w kontekście istnienia życia rozpoczęto w związku z rozważaniem o obecności życia na Wenus. A raczej w górnych warstwach atmosfery, gdyż na powierzchni planety panuje temperatura rzędu 467 stopni Celsjusza, a ciśnienie atmosferyczne jest 90-krotnie większe niż na powierzchni Ziemi. Bardziej przyjazne warunki panują wśród chmur, w górnych warstwach atmosfery. Nie od dzisiaj mówi się o zorganizowaniu misji badawcza w te regiony.
Chmury na Wenus składają się głównie z kwasu siarkowego. Naukowcy z MIT prowadzą eksperymenty, których celem jest opracowanie technik zbierania i badania próbek podczas misji. Jeśli takie próbki zostałyby zebrane, zbadanie istniejących w nich związków organicznych będzie wymagało najpierw odparowania kwasi siarkowego. Badacze stworzyli więc pracujący przy niskim ciśnieniu układ, w którym odparowywali kwas siarkowy z roztworu kwasu i glicyny. Jednak za każdym razem, gdy usunęli większość kwasu, w urządzeniu pozostawała warstwa cieczy. Uczeni szybko zdali sobie sprawę, że kwas siarkowy przereagował z glicyną, tworząc ciecz jonową, która utrzymywała się w szerokim zakresie temperatur i ciśnienia. Wtedy też zespół Agrawal wpadł na pomysł, by sprawdzić, czy ciecze jonowe mogą powstawać i utrzymywać się na planetach, na których panują zbyt wysokie temperatury lub zbyt niskie ciśnienie, by utrzymała się na nich woda w stanie ciekłym.
Eksperymentatorzy przetestowali mieszaniny kwasu siarkowego z ponad 30 związkami organicznymi zawierającymi azot. Mieszaniny tworzyli m.in. na powierzchni skał bazaltowych, które istnieją na wielu planetach. Byliśmy zdumieni, w jak wielu różnych warunkach dochodzi do powstania cieczy jonowej. Jeśli umieścisz kwas siarkowy i związki organiczne na bazalcie, nadmiar kwasu siarkowego wsiąknie w bazalt, a na powierzchni pozostaną krople cieczy jonowej. Formowała się ona w każdych testowanych przez nas warunkach, mówi współautorka badań Sara Seager.
Ciecze jonowe powstawały w temperaturze do 180 stopni Celsjusza przy ekstremalnie niskim ciśnieniu. To oznacza, że mogą powszechnie występować na skalistych planetach czy księżycach. Wyobraźmy sobie planetę gorętsza od Ziemi, na której nie ma wody, a na której występuje, lub kiedyś występował, kwas siarkowy z aktywności wulkanicznej. Wystarczy, że ten kwas będzie miał kontakt ze związkiem organicznym. A związki te są powszechne w Układzie Słonecznym, wyjaśnia Seager. Tak utworzona ciecz jonowa może teoretycznie istnieć przez tysiąclecia, stając się oazą prostych form życia.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z Barcelony i Corku opublikowali najbardziej szczegółową mapę podmorskich kanionów Antarktyki. Zawiera ona 332 kaniony, niektóre z nich o głębokości ponad 4000 metrów. Katalog, wspólne dzieło uczonych z Universitat de Barcelona i University College Cork, zawiera informacje o pięciokrotnie większej liczbie kanionów niż poprzednie podobne zestawy danych. A w towarzyszącym mu artykule na łamach Marine Geology uczeni wykazali, że kaniony mogą mieć większe niż przypuszczano znaczenie dla cyrkulacji wód oceanicznych, zmniejszania się pokrywy morskiego lodu oraz zmian klimatu.
Kaniony odgrywają niezwykle istotną rolę w transporcie osadów i substancji odżywczych z wybrzeży do głębokich partii oceanów, łączą płytkie i głębokie obszary oceanów, tworzą bogate siedliska dla morskiego życia. Dotychczas na całym globie zidentyfikowano około 10 000 podmorskich kanionów, jednak prawdopodobnie jest ich znacznie więcej. Pomimo ich wielkiego wpływu na ekologię, geologię czy oceanografię, struktury te są słabo znane, szczególnie leżące w obszarach poarnych.
Kaniony w Arktyce i Antarktyce są podobne do kanionów z innych obszarów planety, ale zwykle są większe i głębsze z powodu długotrwałego oddziaływania lodu oraz olbrzymich ilości osadów transportowanych przez lodowce z szelfu kontynentalnego, mówi David Amblàs. Ponadto antarktyczne kaniony tworzą się głównie w wyniku działalności prądów zawiesinowych, gdzie gęstsza od otoczenia zawiesina gwałtownie spływa w dół pod wpływem grawitacji. Te silne prądy, zasilane w osady przez lodowce, rzeźbią w dnie wielkie kaniony.
Zdaniem naukowców, najbardziej interesującym aspektem ich badań jest odnotowanie różnic pomiędzy kanionami powstającymi w dwóch ważnych regionach Antarktyki. W Antarktyce Wschodniej kaniony są bardziej rozbudowane, rozgałęzione, tworząc wielkie systemy o przekroju w kształcie litery U. To sugeruje, że powstały w wyniku długotrwałego oddziaływania lodowców i wielkiego wpływu procesów erozji i sedymentacji. Z kolei w Antarktyce Zachodniej kaniony są krótsze, mają bardziej strome brzegi, a ich przekrój przypomina literę V. Spostrzeżenie to jest wsparciem dla hipotezy, że lądolód Arktyki Wschodniej – największy lądolód na Ziemi – powstał wcześniej. Dotychczas hipoteza ta miała wsparcie w badaniu osadów, teraz kolejnym dowodem jest geomorfologia dna morskiego.
Antarktyczne kaniony ułatwiają wymianę wody między szelfem kontynentalnym, a głębokimi partiami oceanu. Dzięki nim zimne gęste wody z okolic lądolodu spływają w dół i tworzą AABW (Antarctic Bottom Water), masę wody odgrywającą ważną rolę w światowej cyrkulacji oceanicznej. Ponadto kaniony kierują ciepłe wody, takie jak CDW (Circumpolar Deep Water) z Pacyfiku i Oceanu Indyjskiego w kierunku szelfu Antarktyki, podgrzewając lód i prowadząc do jego topnienia.
Autorzy badań zauważają, że obecne modele cyrkulacji oceanicznej niedokładnie odtwarzają lokalne procesy fizyczne zachodzące między masami wody a kanionami, przez co mają ograniczoną możliwość przewidywania zmian zachodzących w oceanach i atmosferze.
Źródło: The geomorphometry of Antarctic submarine canyons
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.