Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Nowy pomysł na szczepienie. Można wykorzystać... nici dentystyczne
dodany przez
KopalniaWiedzy.pl, w Medycyna
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Około 15 lat temu immunolog Dusan Bogunovic z Columbia University natrafił na pacjentów cierpiących na rzadką chorobę genetyczną. Pierwotnie sądzono, że mutacja zwiększa ich podatność na niektóre infekcje bakteryjne. Jednak im więcej takich pacjentów identyfikowano, im szerzej zakrojone badania można było przeprowadzić, tym bardziej jasne stawało się, że osoby takie mają niezwykłą cechę – ich organizmy wyjątkowo skutecznie radziły sobie z wirusami.
Naukowiec odkrył, że u wszystkich pacjentów występuje niedobór białka ISG15, pełniącego funkcję regulatora odporności. Towarzyszył mu charakterystyczny dla infekcji wirusowej stan zapalny – łagodny, ale przewlekły i obejmujący cały organizm. Analiza komórek układu odpornościowego wykazała, że pacjenci zetknęli się z wieloma wirusami, w tym grypy, odry, świnki czy ospy wietrznej. Zaskakujące było jednak to, że osoby z mutacją nigdy nie zgłaszały objawów typowych dla tych infekcji.
Wyniki badań skłoniły naukowców do postawienia pytania, czy mechanizm związany z ISG15 można wykorzystać do opracowania uniwersalnej terapii przeciwwirusowej. Taki środek mógłby w przyszłości stanowić ochronę przed kolejnymi epidemiami i pandemią.
Przed tygodniem w Science Translational Medicine ukazał się artykuł An mRNA-based broad-spectrum antiviral inspired by ISG15 deficiency protects against viral infections in vitro and in vivo. Bogunovic i jego koledzy informują w nim o opracowaniu uniwersalnej eksperymentalnej terapii antywirusowej. Gdy stworzony przez siebie środek podawali w postaci kropli do nosa myszom i chomikom, powstrzymywał on replikowanie wirusów grypy oraz SARS-CoV-2 i łagodził objawy choroby. Te dwa wirusy zostały przetestowane in vivo. Natomiast żaden wirus badany in vitro nie poradził sobie z ochroną zapewnianą komórkom przez nowy środek.
Nowa terapia naśladuje skutki niedoboru ISG15. Naukowcy nie wyłączają jednak genu ISG15, gdyż ma on związek z wytwarzaniem ponad 60 białek, a skupili się na 10 białkach odpowiedzialnych za ochronę antywirusową. Na obecnym etapie rozwoju konstrukcja ich środka przypomina szczepionki mRNA przeciwko COVID. W skład preparatu wchodzi 10 cząsteczek mRNA kodujących 10 białek. Zostały one zamknięte w lipidowej nanocząsteczce. Po podaniu komórki biorcy wytwarzają 10 białek chroniących organizm. Całość działa przez krótki czas, wywołuje znacznie mniejszy stan zapalny niż u osób z niedoborem ISG15, ale to wystarcza do zapobiegania chorobom wirusowym, zapewnia Bogunovic.
Zdaniem naukowca, taka szczepionka może znakomicie przyczynić się do powstrzymania kolejnych pandemii. Można by ją podawać lekarzom, osobom w domach opieki i rodzinom chorych. W ten sposób osoby te byłyby chronione na wczesnym etapie rozwijającej się pandemii, bez względu na to, jaki wirus ją wywołuje. Uważamy, że zadziała to nawet jeśli czynnik chorobowy nie zostanie jeszcze zidentyfikowany, mów Bodunovic.
Technologia wymaga jeszcze dopracowania, szczególnie droga podawania i dawka. Co prawda myszy i chomiki były chronione przed poważnym zachorowaniem, ale – zdaniem Bogunovica – ochrona nie była na tyle silna, by bezpiecznie mogły się one kontaktować z chorymi zwierzętami. Naukowcy muszą też określić, jak długo trwa ochrona. Obecnie szacują, że jest to 3-4 dni od podania środka.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Zobaczcie, co wirus opryszczki typu I (HSV-1) robi z komórkami. Po lewej jądro komórkowe przed atakiem wirusa, po prawej – 8 godzin po infekcji. Wirusy są w pełni uzależnione od gospodarzy. Przejmują maszynerię komórek gospodarza, by się namnażać. Okazuje się, że HSV-1 w znaczącym stopniu przebudowuje też wnętrze komórki.
Badacze z hiszpańskiego Narodowego Centrum Biotechnologii zarejestrowali, w jaki sposób wirus przeorganizowuje materiał genetyczny w komórce, zmieniając jego kształt tak, by zyskać najlepszy dostęp do genów, których potrzebuje do optymalnej reprodukcji. HSV-1 to oportunistyczny projektant wnętrz, którzy niezwykle precyzyjnie przebudowuje ludzki genom i wybiera, z którymi jego fragmentami wchodzi w interakcje. To nowatorski mechanizm manipulacji, o którym nie wiedzieliśmy, stwierdziła główna autorka najnowszych badań, doktor Esther González Almela.
Już wcześniej wiedziano, że inne herpeswirusy ścieśniają i zmieniają kształt chromosomów gospodarza. Nie było jednak wiadomo, czy jest to działanie celowe, czy też skutek uboczny zakażenia komórki wirusem. Teraz naukowcy zdobyli pierwszy dowód, że HSV-1 celowo zmienia genom w komórce. Robi to zaledwie w ciągu kilku godzin. Jednak najbardziej obiecującym aspektem tych badań jest spostrzeżenie, że blokując pojedynczy enzym gospodarza – topoizomerazę typu I – można całkowicie zablokować zdolność HSV-1 to reorganizacji materiału genetycznego komórki i tym samym powstrzymać infekcję. Być może uda się w ten sposób kontrolować uciążliwego wirusa, którego nosicielami są niemal 4 miliardy ludzi.
Proces przejmowania komórki przez wirusa rozpoczyna się w ciągu godziny od infekcji. Patogen przejmuje kontrolę nad polimerazą RNA II oraz topoizomerazą I i wykorzystuje je do syntezy własnych białek. Wirus tak intensywnie przejmuje kontrolę, że po około 3 godzinach polimeraza RNA II i inne białka przestają obsługiwać ludzkie geny, w komórce niemal całkowicie ustaje transkrypcja, a to prowadzi do fizycznych zmian w strukturze genomu. Występująca w jądrze komórkowym chromatyna ulega silnemu skondensowaniu i po 3 godzinach zajmuje jedynie 30% pierwotnej objętości. Ten bardzo brutalny atak zaskoczył naukowców. Zawsze sądziliśmy, że gęsta chromatyna blokuje aktywność genów. Tutaj widzimy mechanizm działający w drugą stronę – najpierw dochodzi do dezaktywacji genów, a potem to zagęszczenia chromatyny, stwierdzili naukowcy.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z Centrum Biologii Czeskiej Akademii Nauk odkryli 40 nieznanych dotychczas wirusów występujących w wodzie pitnej, które infekują mikroorganizmy morskie. Pierwszy z nich, szczegółowo opisany Budvirus – którego nazwa pochodzi od Czeskich Budziejowic – należy do grupy gigantycznych wirusów (niektóre z nich są większe od bakterii) i atakuje jednokomórkowe glony, kryptomonady (kryptofity). Okazało się, że Budvirus odgrywa olbrzymią rolę w naturze, kontrolując zakwit glonów i utrzymując równowagę w środowisku wodnym.
Wszystkie wspomniane wirusy zostały znalezione w zbiorniku Římov w pobliżu Czeskich Budziejowic. Jest on regularnie monitorowany od pięciu dekad, co czyni go jednym z najlepiej zbadanych zbiorników słodkowodnych w Europie.
W jednej kropli słodkiej wody może znajdować się nawet milion bakterii i 10 milionów wirusów. Pomimo rozwoju nauki, wciąż nie znamy większość z tych mikroorganizmów. Jesteśmy w stanie stopniowo je poznawać dzięki technikom sekwencjonowania DNA. Wyodrębniamy cały materiał genetyczny znajdujący się w próbce wody, przeprowadzamy jego analizę i w ten sposób śledzimy organizmy obecne w wodzie. Tak zdobywamy informacje o nowych wirusach i bakteriach, wyjaśnia Rohit Ghai, dyrektor Laboratorium Ekologii i Ewolucji Mikroorganizmów w Centrum Biologii Czeskiej Akademii Nauk.
Na ślad Budvirusa naukowcy wpadli wiosną, w czasie gwałtownego zakwitu glonów w wodzie. Wiedzieli, że dzięki drapieżnikom żywiącym się glonami, takim jak pierwotniaki czy wrotki, oraz zmniejszeniu się dostępności składników odżywczych, rozkwit wkrótce zostanie powstrzymany i ilość glonów się zmniejszy. Teraz udało się im potwierdzić, że Budvirus odgrywa olbrzymią rolę w powstrzymywaniu zakwitu glonów, a jego działalność jest szczególnie ważna wiosną. Budvirus jest pierwszym znanym nam wirusem, który infekuje kryptomonady z rodzaju Rhodomonas, jednego z najbardziej rozpowszechnionych glonów. Dlatego też możemy przypuszczać, że reprezentuje on grupę wirusów powszechną w zbiornikach słodkowodnych na całym świecie, stwierdziła Helena Henriques Vieira.
Kapsyd Budvirusa ma kształt 20-ścianu o średnicy 200 nanometrów, jest więc 10-krotnie większy od kapsydu przeciętnego wirusa. Jego genom koduje ponad 400 białek, a funkcja połowy z nich nie jest obecnie znana.
Ekosystemy słodkowodne są niezwykle dynamiczne, zachodzi tam wiele interakcji pomiędzy organizmami od bakterii i wirusów, przez pierwotniaki po ryby. Interakcje te mają olbrzymi wpływ na równowagę środowiska i jego odporność na ekstremalne zmiany. Ważne jest, byśmy dokładnie rozumieli rolę tych organizmów i ich wzajemne interakcje. Dzięki temu, gdy w wodzie będą zachodziły nieprzewidziane zmiany, będziemy wiedzieli, co się dzieje, dodaje Ghai.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Wielka bioróżnorodność lasów deszczowych czy raf koralowych to rzecz powszechnie znana. Mało kto jednak zdaje sobie sprawę, jak olbrzymia bioróżnorodność występuje w jego własnym domu. A konkretnie na szczoteczce do zębów i słuchawce od prysznica. Grupa naukowców z Northwestern University odkryła w tych miejscach zaskakująco duże zróżnicowanie wirusów, z czego wiele gatunków nie było dotychczas znanych nauce. Uczeni badali bakteriofagi, zidentyfikowane przez nich organizmy nie są niebezpieczne dla ludzi.
Mieszkańcy krajów rozwiniętych zdecydowaną większość czasu spędzają w budynkach. Ich zdrowie i dobrostan są powiązane ze środowiskiem wewnątrz tych budynków, w tym z ich mikrobiomami. To dwustronne oddziaływanie. Mikroorganizmy w budynkach wpływają na nas, a my wpływamy na nie. Nasze zachowania, sprzątanie mieszkania, używane środki chemiczne i higieny osobistej, to co jemy, wpływają na skład mikrobiomów. Uczeni z Northwestern zbadali wirusy w domowych biofilmach, skupiając się na słuchawkach od pryszniców oraz szczoteczkach do zębów. Wiemy bowiem, że bakteriofagi, wirusy atakujące bakterie i wysoce specyficzne dla konkretnych ich gatunków, wpływają na strukturę i funkcjonowanie bakteryjnych społeczności. A prysznic czy szczoteczka do zębów to środowiska podlegające dynamicznym zmianom. Zamieszkujące je mikroorganizmy mają do czynienia z ekstremalnymi zmianami temperatur, okresami wysokiej wilgotności oraz wysychania, są wystawione na działanie produktów chemicznych używanych i do higieny osobistej i do utrzymani czystości w łazience.
Badacze przeprowadzili kompleksową analizę genetyczną mikroorganizmów zamieszkujących 34 szczoteczki do zębów i 92 słuchawki do prysznica. Znaleźli na nich ponad 600 gatunków wirusów, z których wiele nie było dotychczas znanych. Szczoteczki do zębów i słuchawki prysznicowe do siedliska fagów zupełnie odmienne od innych, mówi główna autorka badań, Erica M. Hartmann. Badania pokazały, że szczoteczki i słuchawki są zasiedlone prze różne fagi. Co więcej, każdy z badanych przedmiotów miał własny, unikatowy skład mikroorganizmów. Olbrzymie zróżnicowanie mikroorganizmów zaskoczyło uczonych i pokazało, jak wielu bakteriofagów jeszcze nie znamy.
Po co jednak badać mikroorganizmy, które nie są szkodliwe dla człowieka? Fagi są interesujące z punktu widzenia biotechnologii i medycyny. Penicylina pochodzi z pleśni na chlebie. Być może kolejny rewolucyjny antybiotyk zostanie stworzony z czegoś, co żyje na twojej szczoteczce do zębów, wyjaśnia Hartmann.
Uczona dodaje, że projekt badawczy rozpoczął się od zwykłej ciekawości. Jesteśmy otoczeni mikroorganizmami. Jednak ściany czy stoły to dla nich trudne środowisko. Preferują one miejsca, gdzie jest woda. A ta powszechnie występuje na szczoteczkach do zębów i słuchawkach.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.