Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Bezpieczniejsze, lżejsze i tańsze pojazdy kosmiczne dzięki ochronnemu polu magnetycznemu?

Rekomendowane odpowiedzi

Na University of Queensland (UQ) prowadzone są eksperymenty nad wykorzystaniem pól magnetycznych do ochrony wchodzących w atmosferę pojazdów kosmicznych przed nadmierną temperaturą i przeciążeniami. Kluczowym elementem eksperymentów będzie zbadanie deformacji pól magnetycznych w kontakcie z gorącą plazmą. Ich celem jest zaś opracowanie technologii, która pozwoli na budowę bardziej bezpiecznych, lżejszych ich tańszych pojazdów kosmicznych.

Pojazdy kosmiczne wchodzące w atmosferę Ziemi pędzą z prędkością około 30 tys. km/h. Powietrze wokół nich staje się tak gorące, że zamienia się plazmę. Przed spłonięciem pojazdy chronione są za pomocą osłon termicznych. Celem profesora Gildfinda z UQ jest odepchnięcie tej plazmy od pojazdu za pomocą pól magnetycznych generowanych przez nadprzewodzące magnesy. To powinno znacząco zmniejszyć temperatury, jakich doświadcza pojazd wchodzący w atmosferę czy to Ziemi czy Marsa. Tym samym powrót taki będzie bezpieczniejszy, osłony termicznie nie będą musiały być tak potężne jak obecnie, pojazd stanie się więc lżejszy i tańszy. Podobnie jak cała misja związana z jego wystrzeleniem.

Dodatkową korzyścią z wykorzystania pól magnetycznych jest fakt, że gdy wywierają one nacisk na plazmę, plazma odpowiada tym samym. Pojawia się siła, która dodatkowo spowalnia opadający na planetę pojazd. W ten sposób mamy dodatkowy element hamujący. Pojawia się on wcześniej i spowolni pojazd jeszcze zanim otaczająca go kula ognia osiągnie maksymalną intensywność, a przeciążenia staną się trudne do zniesienia. A obniżenie temperatury powierzchni pojazdu oznacza, że osłony termiczne mogą być lżejsze, bez narażania na szwank bezpieczeństwa, wyjaśnia uczony.

Gildfind i jego zespół prowadzą eksperymenty w Centre for Hypersonics University of Queensland, jednym z najważniejszych środków badań nad prędkościami hipersonicznymi, definiowanymi jako prędkości co najmniej 5-krotnie większe od prędkości dźwięku. Dotychczas prowadzono niewiele badań nad deformacją pól magnetycznych przez plazmę utworzoną wokół szybko poruszającego się obiektu. Natomiast zupełnie nic nie wiadomo na temat tego, jak taka technologia sprawdziłaby się w przypadku obiektu wielkości pojazdu kosmicznego. Modele i analizy pokazują, że powinien być to znaczny efekt, ale dopóki tego nie przetestujemy, nie będziemy pewni, stwierdza uczony.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Przez ostatnich 540 milionów lat zmiany w sile pola magnetycznego Ziemi były skorelowane z poziomem atmosferycznego tlenu, donosi amerykańsko-brytyjski zespół naukowy. Wyniki badań sugerują, że procesy zachodzące głęboko wewnątrz naszej planety mogły mieć wpływ na organizmy żywe na powierzchni Ziemi. O swoim odkryciu uczeni poinformowali na łamach Science Advances.
      Historia ziemskiego magnetyzmu zapisana jest w skałach. Gdy rozgrzane minerały znajdujące się magmie stygną, mogą zapisać stan lokalnego pola magnetycznego. I zapis ten pozostanie w nich dopóty, dopóki nie zostaną ponownie silnie rozgrzane. Również ze skał i minerałów można odczytać poziom tlenu w atmosferze, gdyż ich skład chemiczny zależy od ilości tlenu w czasie, gdy się tworzyły. I jeden, i drugi zapis jest od dawna używany w nauce, informacje takie można znaleźć w olbrzymiej liczbę baz danych utworzonych na potrzeby badań geofizycznych i geochemicznych. Jednak, jak twierdzą autorzy nowych badań, dotychczas nikt nie wpadł na pomysł, by dokładnie porównać ze sobą oba zapisy.
      Zadania takiego podjęli się Weijia Kuang i Ravi Kopparapu z NASA Goddard Space Flight Center, Joshua Krissansen-Totton z University of Washington oraz Benjamin J. W. Mills z University of Leeds. Te dwa zestawy danych są bardzo podobne. Ziemia to jedyna znana nam planeta, która podtrzymuje złożone formy życia. Korelacja, którą znaleźliśmy, pozwoli nam lepiej zrozumieć ewolucję oraz jak jest ona powiązana z procesami zachodzącymi wewnątrz planety, mówi Weijia Kiang.
      Uczeni prześledzili zmiany siły pola magnetycznego i poziomu tlenu w atmosferze aż do czasów eksplozji kambryjskiej, w czasie której nagle pojawiło się wiele złożonych form życia. Istnienie korelacji pomiędzy siłą pola magnetycznego, a poziomem tlenu sugeruje, że oba te zjawiska mogą być reakcją na ten sam proces, na przykład na ruch kontynentów, uważa Benjamin Mills.
      Naukowcy mają nadzieję, że uda im się prześledzić jeszcze dłuższy okres historii Ziemi. Chcą sprawdzić, czy znaleziona korelacja się utrzyma. Planują też poddać analizie inne pierwiastki niezbędne do istnienia życia, by przekonać się, czy i w ich przypadku widać taki sam schemat.
      Źródło: Strong link between Earth’s oxygen level and geomagnetic dipole revealed since the last 540 million years, https://www.science.org/doi/10.1126/sciadv.adu8826

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy od dziesięcioleci zastanawiają się, co się stało z polem magnetycznym Księżyca. Na jego istnienie w przeszłości wskazują bowiem przywiezione ze Srebrnego Globu próbki skał, wskazujące, że w przeszłości były one poddane działaniu silnego pola magnetycznego. Zaś obecnie Księżyc nie posiada globalnego pola magnetycznego. Co się więc stało z polem zarejestrowanym w skałach? Naukowcy z MIT uważają, że rozwiązali tę zagadkę.
      Na łamach Science Advances opisali wyniki badań, w ramach których symulowali uderzenie w Księżyc dużego obiektu, jak asteroida. Symulacje wykazały, że w wyniku takiego zdarzenia mogła pojawić się chmura plazmy, która na krótko objęła Księżyc. Plazma taka przepłynęłaby wokół ziemskiego satelity i zgromadziła się po przeciwnej stronie do miejsca uderzania. Tam weszłaby w interakcje ze słabym polem magnetycznym Księżyca, na krótko je wzmacniając. Skały znajdujące się w miejscu nagromadzenia plazmy, zarejestrowałby ten magnetyzm.
      Taka sekwencja wydarzeń wyjaśnia obecność wysoce namagnetyzowanych skał w regionie w pobliżu bieguna południowego, po niewidocznej z Ziemi stronie Księżyca. Zaś dokładnie po przeciwnej stronie od tego obszaru znajduje się Mare Imbrium, jeden z największych kraterów uderzeniowych. Badacze uważają, że to, co go utworzyło, doprowadziło też do powstania plazmy z ich symulacji.
      Zagadkową obecność na Księżycu skał z zapisem silnego pola magnetycznego zauważono w latach 60. i 70. gdy misje Apollo przywiozły próbki. Pozostałości magnetyzmu, szczególnie po niewidocznej stronie Srebrnego Globu, potwierdziły też satelity. Jedna z hipotez mówi, że w przeszłości niewielkie jądro Księżyca generowało słabe pole magnetyczne. Jednak nie wyjaśnia ona, dlaczego w skałach, i to głównie po jednej stronie, pozostał zapis tak silnego magnetyzmu. Alternatywna hipoteza mówi o wielkim uderzeniu, w wyniku którego powstała chmura plazmy.
      W 2020 roku współautorzy obecnych badań, Rona Oran i Benjamin Weiss, sprawdzili, czy takie uderzenie mogło na tyle wzmocnić słoneczne pole magnetyczne wokół Księżyca, by pozostał zapis w skałach. Okazało się, że nie mogło, co wydawało się wykluczać ten scenariusz.
      Na potrzeby obecnych badań uczeni przyjęli inne kryteria. Założyli, że Księżyc posiadał w przeszłości dynamo magnetyczne. Biorąc pod uwagę rozmiary księżycowego jądra pole to musiało być słabe. Oszacowano je na 1 mikroteslę, czyli 50-krotnie mniej niż pole magnetyczne Ziemi. Następnie za pomocą jednego narzędzia przeprowadzili symulację uderzenia oraz powstałej plazmy, drugie zaś narzędzie pokazało, w jaki sposób taka plazma by się przemieszczała i wchodziła w interakcje z polem magnetycznym Księżyca. Wynika z nich, że doszłoby do utworzenia się i przepływu plazmy oraz wzmocnienia pola magnetycznego, ale byłby to proces bardzo szybki. Od momentu wzmocnienia pola do chwili jego powrotu do wartości początkowej minęłoby zaledwie 40 minut.
      Postało więc pytanie, czy tak krótkie oddziaływanie pola pozostawiłoby zapis w skałach. Okazuje się, że tak, za pomocą dodatkowego zjawiska. Z badań wynika, że tak duże uderzenie, jakie utworzyło Mare Imbrium, spowodowałoby powstanie fali uderzeniowej, która skupiłaby się po przeciwnej stronie i doprowadziłaby do tymczasowego zaburzenia elektronów w skałach.
      Naukowcy podejrzewają, że do zaburzenia tego doszło w momencie, gdy plazma wzmocniła pole magnetyczne. Gdy więc elektrony wróciły do stanu równowagi, ich spiny przyjęły orientację zgodną z chwilowo silnym polem magnetycznym. Jeśli rzucisz w powietrze w polu magnetycznym talię kart i każda z kart będzie wyposażone w igłę od kompasu, to gdy karty upadną na ziemię, będą zorientowane w inną stronę, niż przed wyrzuceniem. Tak właśnie działa ten proces, wyjaśnia obrazowo Weiss.
      Źródło: Impact plasma amplification of the ancient lunar dynamo

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Fuzja jądrowa to obietnica czystego, bezpiecznego i praktycznie nieskończonego źródła energii. Badania nad nią trwają od dziesięcioleci i nic nie wskazuje na to, byśmy w najbliższym czasie mogli zastosować ją w praktyce. Naukowcy dokonują powolnych, mniejszych lub większych, kroków na przód w kierunku jej opanowania. Uczeni z University of Texas, Los Alamos National Laboratory i Type One Energy Group rozwiązali właśnie poważny problem, który od 70 lat nękał jeden z rodzajów reaktorów fuzyjnych – stellaratory – spowalniając prace nad nimi. Jego rozwiązanie przyda się również w udoskonaleniu tokamaków, innego – znacznie bardziej popularnego – projektu reaktora fuzyjnego.
      Jednym z poważnych wyzwań stojących przed wykorzystaniem w praktyce fuzji jądrowej jest utrzymanie wysokoenergetycznych cząstek wewnątrz reaktora. Gdy takie wysokoenergetyczne cząstki alfa wyciekają, uniemożliwia to uzyskanie wystarczająco gorącej i gęstej plazmy, niezbędnej do podtrzymania reakcji. Inżynierowie opracowali złożone metody zapobiegania wyciekom za pomocą pól magnetycznych, jednak w polach takich występują luki, a przewidzenie ich lokalizacji i zapobieżenie im wymaga olbrzymich mocy obliczeniowych i wiele czasu.
      Na łamach Physical Review Letters ukazał się artykuł, w którym wspomniani wcześniej naukowcy informują o opracowaniu metody 10-krotnie szybszego przewidywania miejsc pojawiania się luk, bez poświęcania dokładności.
      Rozwiązaliśmy problem, który był nierozwiązany od 70 lat. Będzie to znaczący przełom w sposobie projektowania reaktorów, mówi profesor Josh Burry z University of Texas. W stellaratorach wykorzystywany jest układ cewek, za pomocą których generowane są pola magnetyczne. Nazywany jest on „magnetyczną butelką”. Miejsca występowania dziur w magnetycznej butelce można precyzyjnie przewidywać korzystając z zasad dynamiki Newtona. Jednak działanie takie wymaga olbrzymich ilości czasu i wielkich mocy obliczeniowych. Co więcej, by zaprojektować stellarator idealny konieczna byłaby symulacja setek tysięcy różnych projektów i stopniowe dostosowywanie do każdego z nich układu magnetycznej butelki.
      By więc oszczędzić czas i pieniądze podczas obliczeń standardowo używa się teorii perturbacji, która daje wyniki przybliżone. Są one jednak znacznie mniej dokładne. Autorzy najnowszych badań podeszli do problemu w inny sposób, wykorzystując teorię symetrii.
      Obecnie nie ma innego niż nasz teoretycznego sposobu na rozwiązanie kwestii uwięzienia cząstek alfa. Bezpośrednie zastosowanie zasad dynamiki Newtona jest zbyt kosztowne, a teoria perturbacji związana jest z poważnymi błędami. Nasza teoria jest pierwszą, która radzi sobie z tymi ograniczeniami, dodaje Burry.
      Co więcej, nowa praca może pomóc też w rozwiązaniu podobnego, ale innego problemu występującego w tokamakach. W nich z kolei problemem są wysokoenergetyczne elektrony, które dziurawią osłony reaktora. Nowa metoda może pozwolić na zidentyfikowanie luk w polach magnetycznych, przez które elektrony wyciekają.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Teleskop Webba wykrył w atmosferze planety K2-18b molekuły zawierające węgiel, w tym metan oraz dwutlenek węgla. Odkrycie to kolejna wskazówka, że K2-18b może być planetą hyceańską (hycean planet). To termin zaproponowany niedawno przez naukowców z Uniwersytetu w Cambridge na określenie hipotetycznej klasy planet. Pochodzi od połączenia słów „wodór” (hydrogen) i „ocean”. Oznacza potencjalnie nadające się do zamieszkania gorące planety pokryte oceanami, które posiadają bogatą w wodór atmosferę. Zdaniem brytyjskich uczonych mogą być bardziej powszechne niż planety typu ziemskiego.
      Jeśli przyjmiemy, że planety hyceańskie rzeczywiście istnieją i stanowią nową klasę planet, oznacza to, że ekosfera – czyli obszar wokół gwiazdy, w którym istniejące planety mogą podtrzymać życie – jest większy, niż ekosfera oparta wyłącznie na istnieniu wody w stanie ciekłym.
      K2-18b krąży w ekosferze chłodnego karła K2-18 znajdującego się w odległości 120 lat świetlnych od Ziemi w Gwiazdozbiorze Lwa. Jest ona 8,6 razy bardziej masywna od Ziemi. Rozmiary plasują ją pomiędzy wielkością Ziemi a Neptuna. W Układzie Słonecznym nie istnieje żaden „mini-Neptun”, dlatego słabo rozumiemy takie światy. Jeśli zaś K2-18b jest rzeczywiście planetą hyceańską, jeśli taki typ planet istnieje, mogą być one dobrym celem poszukiwania życia. Tradycyjnie życia poszukiwaliśmy na mniejszych skalistych planetach, jednak atmosfery większych światów hyceańskich jest łatwiej badać, mówi Nikku Madhusudhan z Uniwersytetu w Cambridge. Kierował on pracami zespołu, który zaproponował istnienie światów hyceańskich. Właśnie zresztą na podstawie badań K2-18b.
      Obecność w atmosferze tej planety dużych ilości metanu i dwutlenku węgla przy braku amoniaku wspiera hipotezę, że istnieje tam ocean przykryty bogatą w wodór atmosferę. Jakby tego było mało, wstępne dane przekazane przez Webba mogą wskazywać na obecność w atmosferze siarczku dimetylu (DMS). Na Ziemi związek ten jest wytwarzany wyłącznie przez organizmy żywe, a większość DMS obecnego w atmosferze naszej planety zostało wyemitowane przez fitoplankton. Jednak ewentualne potwierdzenie istnienia tego związku w atmosferze K2-18b wymaga dalszych badań.
      Mimo, że planeta znajduje się w ekosferze, a jej atmosfera zawiera molekuły z węglem, nie oznacza to jeszcze, że może na niej istnieć życie. Promień K2-18b jest o 2,6 razy większy od promienia Ziemi. To oznacza, że jej wnętrze prawdopodobnie stanowi lód poddany wysokiemu ciśnieniu, na jego powierzchni znajduje się ocean, a planetę otacza atmosfera cieńsza niż atmosfera Ziemi. Temperatura oceanu może być zbyt wysoka, by mogło powstać w nim życie. Być może jest na tyle wysoka, że nie ma tam wody w stanie ciekłym.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...