Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Bezpieczniejsze, lżejsze i tańsze pojazdy kosmiczne dzięki ochronnemu polu magnetycznemu?
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Niemieccy badacze znaleźli nowe źródło informacji o stężeniu dwutlenku węgla w atmosferze przed milionami lat. Okazało się, że zapis na ten temat znajduje się w... skamieniałych zębach dinozaurów. Uczeni z Uniwersytetów w Moguncji, Göttingen i Bochum, na podstawie analizy izotopów tlenu w szkliwie zębów dinozaurów stwierdzili, że stężenie CO2 w atmosferze w mezozoiku (252–66 milionów lat temu), było znacznie wyższe niż obecnie. Badania były możliwe dzięki wykorzystaniu innowacyjnej metody, która pozwoliła na określenie względnego stosunku wszystkich trzech naturalnych izotopów tlenu.
Badania wykazały, że produkcja pierwotna – czyli w tym przypadku szybkość gromadzenia energii promieniowania słonecznego, która jest podczas fotosyntezy przekształcana w energię wiązań chemicznych w tkankach roślinnych – była dwukrotnie większa niż obecnie.
Naukowcy przeanalizowali zęby dinozaurów z Ameryki Północnej, Afryki i Europy pochodzące o czasów od późnej jury po późną kredę. Szkliwo zębowe to jeden z najbardziej stabilnych materiałów biologicznych. Zawiera ono trzy izotopy tlenu, które do organizmu dinozaurów dostawały się w czasie oddychania. Względny stosunek tych izotopów w powietrzu zależy od zmian w poziomie atmosferycznego dwutlenku węgla i intensywności fotosyntezy. To oznacza, że zęby dinozaurów mogą zawierać dane o klimacie i szacie roślinnej.
Z badań wynika, że pod koniec jury, około 150 milionów lat temu, stężenie CO2 w atmosferze było czterokrotnie większe niż w epoce przedprzemysłowej. W późnej kredzie – 73–66 milionów lat temu – było zaś 3-krotnie wyższe. W czasach przedprzemysłowych stężenie CO2 w atmosferze wynosiło 280 ppm. Obecnie jest ono o ponad 50% wyższe. W 2024 było to 424 ppm. Wartość ta szybko rośnie. Jeszcze w 2017 roku stężenie wynosiło 406 ppm.
Analizy wykazały też, że w niezwykły stosunek izotopów tlenu w niektórych zębach gatunków Tyrannosaurus rex i Kaatedocus siberi. To najprawdopodobniej dowód na nagłe wzrosty stężenia CO2, spowodowane na przykład potężną aktywnością wulkaniczną, jak ta, która utworzyła trapy Dekanu.
Uzyskane wyniki to przełom w paleoklimatologii. Dotychczas bowiem w czasie podobnych badań używa się próbek węglanów z gleby i wykorzystuje proxy morskie, czyli niebezpośrednich wskaźników ze środowiska morskiego. Obie te metody obarczone są jednak pewnym marginesem niepewności. Użycie szkliwa zębów dinozaurów to pierwsza metoda badań tego typu opierająca się na kręgowcach lądowych. To całkowicie nowy sposób wglądu w przeszłość Ziemi. Teraz możemy użyć sfosylizowanego szkliwa do badania składu atmosfery oraz produktywności roślin morskich i lądowych. To kluczowe elementy zrozumienia długoterminowej dynamiki klimatu, mówi doktor Dingsu Feng z Wydziału Geochemii i Geologii Izotopowej na Uniwersytecie w Göttingen.
Informacje o produkcji pierwotnej to ważne dane na temat lądowych i morskich sieci troficznych. Dane takie trudno jest zdobyć, a są one bardzo ważne, gdyż to dostępna biomasa roślinna decyduje o liczbie zwierząt, ich gatunków oraz długości łańcucha pokarmowego, wyjaśnia profesor Eva M. Griebeler z Uniwersytetu w Moguncji.
Badania zostały omówione na łamach PNAS.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Przez ostatnich 540 milionów lat zmiany w sile pola magnetycznego Ziemi były skorelowane z poziomem atmosferycznego tlenu, donosi amerykańsko-brytyjski zespół naukowy. Wyniki badań sugerują, że procesy zachodzące głęboko wewnątrz naszej planety mogły mieć wpływ na organizmy żywe na powierzchni Ziemi. O swoim odkryciu uczeni poinformowali na łamach Science Advances.
Historia ziemskiego magnetyzmu zapisana jest w skałach. Gdy rozgrzane minerały znajdujące się magmie stygną, mogą zapisać stan lokalnego pola magnetycznego. I zapis ten pozostanie w nich dopóty, dopóki nie zostaną ponownie silnie rozgrzane. Również ze skał i minerałów można odczytać poziom tlenu w atmosferze, gdyż ich skład chemiczny zależy od ilości tlenu w czasie, gdy się tworzyły. I jeden, i drugi zapis jest od dawna używany w nauce, informacje takie można znaleźć w olbrzymiej liczbę baz danych utworzonych na potrzeby badań geofizycznych i geochemicznych. Jednak, jak twierdzą autorzy nowych badań, dotychczas nikt nie wpadł na pomysł, by dokładnie porównać ze sobą oba zapisy.
Zadania takiego podjęli się Weijia Kuang i Ravi Kopparapu z NASA Goddard Space Flight Center, Joshua Krissansen-Totton z University of Washington oraz Benjamin J. W. Mills z University of Leeds. Te dwa zestawy danych są bardzo podobne. Ziemia to jedyna znana nam planeta, która podtrzymuje złożone formy życia. Korelacja, którą znaleźliśmy, pozwoli nam lepiej zrozumieć ewolucję oraz jak jest ona powiązana z procesami zachodzącymi wewnątrz planety, mówi Weijia Kiang.
Uczeni prześledzili zmiany siły pola magnetycznego i poziomu tlenu w atmosferze aż do czasów eksplozji kambryjskiej, w czasie której nagle pojawiło się wiele złożonych form życia. Istnienie korelacji pomiędzy siłą pola magnetycznego, a poziomem tlenu sugeruje, że oba te zjawiska mogą być reakcją na ten sam proces, na przykład na ruch kontynentów, uważa Benjamin Mills.
Naukowcy mają nadzieję, że uda im się prześledzić jeszcze dłuższy okres historii Ziemi. Chcą sprawdzić, czy znaleziona korelacja się utrzyma. Planują też poddać analizie inne pierwiastki niezbędne do istnienia życia, by przekonać się, czy i w ich przypadku widać taki sam schemat.
Źródło: Strong link between Earth’s oxygen level and geomagnetic dipole revealed since the last 540 million years, https://www.science.org/doi/10.1126/sciadv.adu8826
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy od dziesięcioleci zastanawiają się, co się stało z polem magnetycznym Księżyca. Na jego istnienie w przeszłości wskazują bowiem przywiezione ze Srebrnego Globu próbki skał, wskazujące, że w przeszłości były one poddane działaniu silnego pola magnetycznego. Zaś obecnie Księżyc nie posiada globalnego pola magnetycznego. Co się więc stało z polem zarejestrowanym w skałach? Naukowcy z MIT uważają, że rozwiązali tę zagadkę.
Na łamach Science Advances opisali wyniki badań, w ramach których symulowali uderzenie w Księżyc dużego obiektu, jak asteroida. Symulacje wykazały, że w wyniku takiego zdarzenia mogła pojawić się chmura plazmy, która na krótko objęła Księżyc. Plazma taka przepłynęłaby wokół ziemskiego satelity i zgromadziła się po przeciwnej stronie do miejsca uderzania. Tam weszłaby w interakcje ze słabym polem magnetycznym Księżyca, na krótko je wzmacniając. Skały znajdujące się w miejscu nagromadzenia plazmy, zarejestrowałby ten magnetyzm.
Taka sekwencja wydarzeń wyjaśnia obecność wysoce namagnetyzowanych skał w regionie w pobliżu bieguna południowego, po niewidocznej z Ziemi stronie Księżyca. Zaś dokładnie po przeciwnej stronie od tego obszaru znajduje się Mare Imbrium, jeden z największych kraterów uderzeniowych. Badacze uważają, że to, co go utworzyło, doprowadziło też do powstania plazmy z ich symulacji.
Zagadkową obecność na Księżycu skał z zapisem silnego pola magnetycznego zauważono w latach 60. i 70. gdy misje Apollo przywiozły próbki. Pozostałości magnetyzmu, szczególnie po niewidocznej stronie Srebrnego Globu, potwierdziły też satelity. Jedna z hipotez mówi, że w przeszłości niewielkie jądro Księżyca generowało słabe pole magnetyczne. Jednak nie wyjaśnia ona, dlaczego w skałach, i to głównie po jednej stronie, pozostał zapis tak silnego magnetyzmu. Alternatywna hipoteza mówi o wielkim uderzeniu, w wyniku którego powstała chmura plazmy.
W 2020 roku współautorzy obecnych badań, Rona Oran i Benjamin Weiss, sprawdzili, czy takie uderzenie mogło na tyle wzmocnić słoneczne pole magnetyczne wokół Księżyca, by pozostał zapis w skałach. Okazało się, że nie mogło, co wydawało się wykluczać ten scenariusz.
Na potrzeby obecnych badań uczeni przyjęli inne kryteria. Założyli, że Księżyc posiadał w przeszłości dynamo magnetyczne. Biorąc pod uwagę rozmiary księżycowego jądra pole to musiało być słabe. Oszacowano je na 1 mikroteslę, czyli 50-krotnie mniej niż pole magnetyczne Ziemi. Następnie za pomocą jednego narzędzia przeprowadzili symulację uderzenia oraz powstałej plazmy, drugie zaś narzędzie pokazało, w jaki sposób taka plazma by się przemieszczała i wchodziła w interakcje z polem magnetycznym Księżyca. Wynika z nich, że doszłoby do utworzenia się i przepływu plazmy oraz wzmocnienia pola magnetycznego, ale byłby to proces bardzo szybki. Od momentu wzmocnienia pola do chwili jego powrotu do wartości początkowej minęłoby zaledwie 40 minut.
Postało więc pytanie, czy tak krótkie oddziaływanie pola pozostawiłoby zapis w skałach. Okazuje się, że tak, za pomocą dodatkowego zjawiska. Z badań wynika, że tak duże uderzenie, jakie utworzyło Mare Imbrium, spowodowałoby powstanie fali uderzeniowej, która skupiłaby się po przeciwnej stronie i doprowadziłaby do tymczasowego zaburzenia elektronów w skałach.
Naukowcy podejrzewają, że do zaburzenia tego doszło w momencie, gdy plazma wzmocniła pole magnetyczne. Gdy więc elektrony wróciły do stanu równowagi, ich spiny przyjęły orientację zgodną z chwilowo silnym polem magnetycznym. Jeśli rzucisz w powietrze w polu magnetycznym talię kart i każda z kart będzie wyposażone w igłę od kompasu, to gdy karty upadną na ziemię, będą zorientowane w inną stronę, niż przed wyrzuceniem. Tak właśnie działa ten proces, wyjaśnia obrazowo Weiss.
Źródło: Impact plasma amplification of the ancient lunar dynamo
« powrót do artykułu -
przez KopalniaWiedzy.pl
Fuzja jądrowa to obietnica czystego, bezpiecznego i praktycznie nieskończonego źródła energii. Badania nad nią trwają od dziesięcioleci i nic nie wskazuje na to, byśmy w najbliższym czasie mogli zastosować ją w praktyce. Naukowcy dokonują powolnych, mniejszych lub większych, kroków na przód w kierunku jej opanowania. Uczeni z University of Texas, Los Alamos National Laboratory i Type One Energy Group rozwiązali właśnie poważny problem, który od 70 lat nękał jeden z rodzajów reaktorów fuzyjnych – stellaratory – spowalniając prace nad nimi. Jego rozwiązanie przyda się również w udoskonaleniu tokamaków, innego – znacznie bardziej popularnego – projektu reaktora fuzyjnego.
Jednym z poważnych wyzwań stojących przed wykorzystaniem w praktyce fuzji jądrowej jest utrzymanie wysokoenergetycznych cząstek wewnątrz reaktora. Gdy takie wysokoenergetyczne cząstki alfa wyciekają, uniemożliwia to uzyskanie wystarczająco gorącej i gęstej plazmy, niezbędnej do podtrzymania reakcji. Inżynierowie opracowali złożone metody zapobiegania wyciekom za pomocą pól magnetycznych, jednak w polach takich występują luki, a przewidzenie ich lokalizacji i zapobieżenie im wymaga olbrzymich mocy obliczeniowych i wiele czasu.
Na łamach Physical Review Letters ukazał się artykuł, w którym wspomniani wcześniej naukowcy informują o opracowaniu metody 10-krotnie szybszego przewidywania miejsc pojawiania się luk, bez poświęcania dokładności.
Rozwiązaliśmy problem, który był nierozwiązany od 70 lat. Będzie to znaczący przełom w sposobie projektowania reaktorów, mówi profesor Josh Burry z University of Texas. W stellaratorach wykorzystywany jest układ cewek, za pomocą których generowane są pola magnetyczne. Nazywany jest on „magnetyczną butelką”. Miejsca występowania dziur w magnetycznej butelce można precyzyjnie przewidywać korzystając z zasad dynamiki Newtona. Jednak działanie takie wymaga olbrzymich ilości czasu i wielkich mocy obliczeniowych. Co więcej, by zaprojektować stellarator idealny konieczna byłaby symulacja setek tysięcy różnych projektów i stopniowe dostosowywanie do każdego z nich układu magnetycznej butelki.
By więc oszczędzić czas i pieniądze podczas obliczeń standardowo używa się teorii perturbacji, która daje wyniki przybliżone. Są one jednak znacznie mniej dokładne. Autorzy najnowszych badań podeszli do problemu w inny sposób, wykorzystując teorię symetrii.
Obecnie nie ma innego niż nasz teoretycznego sposobu na rozwiązanie kwestii uwięzienia cząstek alfa. Bezpośrednie zastosowanie zasad dynamiki Newtona jest zbyt kosztowne, a teoria perturbacji związana jest z poważnymi błędami. Nasza teoria jest pierwszą, która radzi sobie z tymi ograniczeniami, dodaje Burry.
Co więcej, nowa praca może pomóc też w rozwiązaniu podobnego, ale innego problemu występującego w tokamakach. W nich z kolei problemem są wysokoenergetyczne elektrony, które dziurawią osłony reaktora. Nowa metoda może pozwolić na zidentyfikowanie luk w polach magnetycznych, przez które elektrony wyciekają.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.