Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
2025 – rok przełomu? W UE może być to ostatni rok wzrostu emisji CO2 z transportu
dodany przez
KopalniaWiedzy.pl, w Ciekawostki
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Przestawienie światowego systemu energetycznego na źródła odnawialne będzie wiązało się z większą emisją węgla do atmosfery, gdyż wytworzenie ogniw fotowoltaicznych, turbin wiatrowych i innych urządzeń wymaga nakładów energetycznych. Jednak im szybciej będzie przebiegał ten proces, tym większe będą spadki emisji, ponieważ więcej energii ze źródeł odnawialnych w systemie oznacza, że źródła te będą w coraz większym stopniu napędzały zmianę. Takie wnioski płyną z badań, których autorzy oszacowali koszt zmiany systemu produkcji energii, liczony nie w dolarach, a w emisji gazów cieplarnianych.
Wniosek z naszych badań jest taki, że do przebudowania światowej gospodarki potrzebujemy energii i musimy to uwzględnić w szacunkach. W jaki sposób by ten proces nie przebiegał, nie są to wartości pomijalne. Jednak im więcej zainwestujemy w początkowej fazie w zieloną energię, w tym większym stopniu ona sama będzie napędzała zmiany, mówi główny autor badań, doktorant Corey Lesk z Columbia University.
Naukowcy obliczyli jaka będzie emisja gazów cieplarnianych związana z wydobyciem surowców, wytworzeniem, transportem, budowaniem i innymi czynnościami związanymi z tworzeniem farm słonecznych i wiatrowych oraz ze źródłami geotermalnymi i innymi. Do obliczeń przyjęto scenariusz zakładający, że świat całkowicie przechodzi na bezemisyjną produkcję energii.
Jedne z wcześniejszych badań pokazują, że przestawienie całej światowej gospodarki (nie tylko systemu energetycznego) na bezemisyjną do roku 2050, kosztowałoby 3,5 biliona dolarów rocznie. Z innych badań wynika, że same tylko Stany Zjednoczone musiałyby w tym czasie zainwestować nawet 14 bilionów dolarów.
Teraz możemy zapoznać się z badaniami pokazującymi, jak duża emisja CO2 wiązałaby się ze zbudowaniem bezemisyjnego systemu produkcji energii.
Jeśli proces zmian będzie przebiegał w tym tempie, co obecnie – a zatem gdy pozwolimy na szacowany wzrost średniej globalnej temperatury o 2,7 stopnia Celsjusza do końca wieku – to do roku 2100 procesy związane z budową bezemisyjnego systemu produkcji energii będą wiązały się z emisją 185 miliardów ton CO2 do atmosfery. To dodatkowo tyle, ile obecnie ludzkość emituje w ciągu 5-6 lat. Będzie więc wiązało się to ze znacznym wzrostem emisji. Jeśli jednak tworzylibyśmy tę samą infrastrukturę na tyle szybko, by ograniczyć wzrost średniej temperatury do 2 stopni Celsjusza – a przypomnijmy, że taki cel założono w międzynarodowych porozumieniach – to zmiana struktury gospodarki wiązałaby się z emisją dodatkowych 95 miliardów ton CO2 do roku 2100. Moglibyśmy jednak założyć jeszcze bardziej ambitny cel i ograniczyć wzrost globalnej temperatury do 1,5 stopnia Celsjusza. W takim wypadku wiązałoby się to z wyemitowaniem 20 miliardów ton CO2, a to zaledwie połowa rocznej emisji.
Autorzy badań zastrzegają, że ich szacunki są prawdopodobnie zbyt niskie. Nie brali bowiem pod uwagę emisji związanych z koniecznością budowy nowych linii przesyłowych, systemów przechowywania energii czy zastąpienia samochodów napędzanych paliwami kopalnymi przez pojazdy elektryczne. Skupili się poza tym tylko na dwutlenku węgla, nie biorąc pod uwagę innych gazów cieplarnianych, jak metan czy tlenek azotu. Zauważają też, że zmiana gospodarki wiąże się nie tylko z problemem emisji, ale też z innymi negatywnymi konsekwencjami, jak konieczność sięgnięcia po rzadziej dotychczas używane minerały, których złoża mogą znajdować się w przyrodniczo cennych czy dziewiczych obszarach, zauważają też, że budowa wielkich farm fotowoltaicznych i wiatrowych wymaga zajęcia dużych obszarów, co będzie wpływało na mieszkających tam ludzi oraz ekosystemy.
Pokazaliśmy pewne minimum. Koszt maksymalny jest zapewne znacznie większy, mówi Lesk. Dodaje, że badania przyniosły zachęcające wyniki. Pokazują bowiem, że im szybciej i więcej zainwestujemy na początku, tym mniejsze będą koszty. Jeśli jednak wielkie inwestycje nie rozpoczną się w ciągu najbliższych 5–10 lat, stracimy okazję do znacznego obniżenia kosztów.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Przed dwoma dniami prezydent Biden popisał Inflation Reduction Act, ustawę przewidującą wydatkowanie z federalnego budżetu 437 miliardów dolarów w ciągu najbliższych 10 lat. Przewidziano w niej 370 miliardów USD na energetykę odnawialną i inne technologie niskoemisyjne. Jednak najbardziej interesujące są przepisy dotyczące technologii produkcji wodoru. Z jednej strony dlatego, że przewidziano środki znacznie większe niż spodziewali się analitycy, z drugiej zaś, że przepisy nie wyróżniają żadnej technologii pozyskiwania wodoru. Specjaliści zajmujący się rynkiem wodoru mówią, że dzięki temu w końcu można będzie mówić o początku prawdziwej rewolucji wodorowej. Wodór można przecież wykorzystać zarówno jako paliwo napędzające pojazdy czy statki, jak i do produkcji energii elektrycznej zasilającej nasze domy.
Ustawa przewiduje bowiem, że producenci wodoru mogą pomniejszyć należny państwu podatek, a wielkość tego pomniejszenia będzie zależała wyłącznie od ilości dwutlenku węgla emitowanego podczas produkcji wodoru. I tak producenci wykorzystujący najczystszą obecnie metodę pozyskiwania wodoru, w czasie której na każdy kilogram wodoru emituje się 0,45 kg CO2, będą mogli odpisać 3 USD na każdy wytworzony kilogram wodoru. Dzięki temu wodór taki może być tańszy niż tzw. szary wodór uzyskiwany z gazu metodą reformingu parowego. W metodzie tej na każdy kilogram wodoru emituje się 8–10 kg CO2. Obecnie cena szarego wodoru w USA to około 2 USD/kg. Dlatego też niemal cały wodór – ok. 10 milionów ton rocznie – produkowany w Stanach Zjednoczonych wytwarzany jest tą metodą.
Największym na świecie producentem wodoru są Chiny. Państwo Środka wytwarza 25 milionów ton tego pierwiastka rocznie, z czego aż 62% uzyskuje się z węgla, co wiąże się z emisją 18–20 kg CO2 na kilogram wodoru. Zarówno USA jak i Chiny produkują czysty tzw. zielony wodór uzyskiwany metodą elektrolizy z wykorzystaniem odnawialnych źródeł energii, ale produkcja ta nie przekracza 1% całości. Ten zielony wodór kosztuje bowiem ok. 5 USD/kg. Teraz, dzięki możliwości odpisania 3-dolarowego podatku, stanie się on konkurencyjny cenowo z szarym wodorem.
Amerykanie opracowali też plan dojścia do produkcji zielonego wodoru bez ulg podatkowych. Przepisy przewidują, że do roku 2026 kwota, którą można będzie odpisać od kilograma zielonego wodoru zostanie zmniejszona do 2 USD, a w roku 2031 wyniesie 1 USD.
Przepisy te znacznie przyspieszą transformację wodorową. Specjaliści z National Renewable Energy Laboratory spodziewali się, że cena zielonego wodoru spadnie o trzy dolary do roku 2026. Teraz, dzięki ustawie, spadnie ona natychmiast. Mamy gwałtowne obniżenie kosztów do poziomu, przy którym zielony wodór staje się konkurencyjny, a w wielu miejscach tańszy, od wodoru pozyskiwanego z paliw kopalnych. Stąd też wielkie nadzieje związane z nową ustawą.
Wspomniany odpis podatkowy to tylko jeden z ostatnich kroków na rzecz wodorowej rewolucji. W ubiegłym roku w życie weszła ustawa Infrastructure Investment and Jobs Act, w której przewidziano 8 miliardów USD na stworzenie w USA ośmiu regionalnych „hubów wodorowych” produkujących zielony wodór. W oczekiwaniu na rozdysponowanie tych pieniędzy, co ma nastąpić we wrześniu lub październiku, przedsiębiorstwa zgłosiły 22 projekty potencjalnych hubów.
Wkrótce też ma ruszyć warty 2,65 miliarda USD projekt firm Mitsubishi Power Americas i Magnum Development, w ramach którego zainstalowane zostaną 840-megawatowe turbiny zasilane mieszaniną gazu naturalnego i wodoru, wspierane przez instalację fotowoltaiczną. W miejscu tym 220-megawatowy system elektrolizy będzie wytwarzał wodór. W znajdujących się w pobliżu podziemnych wysadach solnych powstaną zaś magazyny przechowujące do 300 GWh energii w postaci wodoru.
Nowe amerykańskie przepisy powinny znacznie przyspieszyć prace prowadzone chociażby przez Hydrogen Council. To ogólnoświatowa organizacja skupiająca obecnie 132 korporacje pracujące nad technologiami wodorowymi.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Wiele ludzkich działań niesie ze sobą zewnętrzne koszty społeczne, środowiskowe czy zdrowotne. Gdy np. jedziemy samochodem, musimy zapłacić za paliwo, jednak cena paliwa nie uwzględnia kosztu zanieczyszczenia środowiska czy negatywnego wpływu spalin na ludzkie zdrowie. Naukowcy z brytyjskiego University of Sussex i koreańskiego Hanyang University podjęli się globalnego oszacowania kosztów zewnętrznych związanych z działalnością sektora transportowego i energetycznego. Okazało się, że koszty te wynoszą ponad 1/4 światowego produktu brutto.
Z analizy przeprowadzonej przez profesorów Benjamina K. Sovacoola i Jinsoo Kima, wynika, że zewnętrzne koszty społeczne, zdrowotne i środowiskowe obu wspomnianych sektorów to 24,662 biliony USD, czyli około 29% światowego produktu brutto.
Badania opublikowane na łamach pisma Energy Research & Social Science wykazały, że gdyby uwzględnić wszystkie koszty powodowane przez wykorzystywanie węgla – takie jak zmiana klimatu, zanieczyszczenie powietrza czy degradacja gleb – to cena węgla powinna być ponaddwukrotnie wyższa, niż jest obecnie.
Autorzy badań podkreślają, że obecny system energetyczny nie sprawdza się pod względem rynkowym. Gdyby bowiem uwzględnić rzeczywiste koszty produkcji energii, to okazałoby się, że nieuwzględniane koszty są niemal równe obecnym kosztom produkcji, przez co wiele elektrowni węglowych i atomowych byłoby nieopłacalnych. Naukowcy przypominają przy tym, że również systemy produkcji energii odnawialnej niosą ze sobą koszty zewnętrzne.
Podczas badań zidentyfikowaliśmy olbrzymie koszty zewnętrzne, które niemal nigdy nie są uwzględniane w rzeczywistych wydatkach związanych z jazdą samochodem czy użytkowaniem elektrowni węglowej. Uwzględnienie tych kosztów doprowadziłoby do radykalnej zmiany szacunków ekonomicznych i portfolio zasobów, na których polegają dostawcy energii, mówi profesor Sovacool.
To nie jest tak, że społeczeństwo nie płaci tych kosztów. Po prostu koszty te nie są uwzględniane w cenie energii. I, niestety, te koszty zewnętrzne nie są ponoszone ani równo, ani uczciwie. Najbardziej poszkodowani są ci najsłabiej reprezentowani na rynku. To na przykład ludzie żyjący na obszarach o najbardziej zanieczyszczonym powietrzu, glebie i wodzie, których nie stać na przeprowadzkę w inne regiony czy mieszkańcy wysp ledwie wystających nad poziom morza, jak Vanuatu czy Malediwy, którzy już teraz są zagrożeni przez wzrost poziomu wód oceanicznych.
Profesor Jinsoo Kim dodaje, że badania jasno pokazują, iż ropa naftowa, węgiel i związane z nimi odpady generują znacznie więcej kosztów w portfolio firm energetycznych niż inne metody produkcji energii. Gdyby prawdziwe koszty wykorzystywania paliw kopalnych były uwzględniane, to wielkie ponadnarodowe koncerny energetyczne, które dominują na światowym rynku, przynosiłyby olbrzymie straty. Jednak zamiast tego rachunek wystawiany jest społeczeństwom, które ponoszą te koszty.
Na potrzeby swoich badań uczeni wykonali metaanalizę i syntezę 139 badań naukowych, w których dokonano w sumie 704 szacunków kosztów zewnętrznych. Były to 83 badania dotyczące dostarczania energii, 13 badań nad efektywnością energetyczną i 43 badania nad transportem.
Z przeprowadzonej analizy wynika, że największe koszty zewnętrzne niesie ze sobą produkcja energii z węgla. Wynoszą one aż 14,5 centa na kWh, podczas gdy średni koszt produkcji energii z węgla w czasie całego okres działania elektrowni węglowej wynosi od 6,6 do 15,2 centa/kWh. Drugim pod względem wysokości kosztów zewnętrznych rodzajem pozyskiwania energii jest jej produkcja z gazu ziemnego. Tam koszty zewnętrzne to 3,5 centa/kWh, przy koszcie produkcji wynoszącym 4,4–6,8 centa/kWh.
To poważne wyzwanie dla polityków, urzędników i planistów, by spowodować, żeby rynki transportowy i energetyczny funkcjonowały ja należy i uwzględniały w cenach swoich produktów biliony dolarów kosztów zewnętrznych, które obecnie przerzucają na społeczeństwo. Obecnie konsumenci są odseparowani od rzeczywistych kosztów pozyskiwania, transportu i przetwarzania surowców energetycznych oraz pozyskiwania z nich energii. A to oznacza, że kolosalny koszt społeczny i ekologiczny takich działań jest trudniej zauważyć. Zasadnicze pytanie brzmi, czy chcemy globalnych rynków, które manipulują kosztami zewnętrznymi dla własnych korzyści, czy też wolimy politykę, która wymusi na nich zinternalizowanie tych kosztów – stwierdza Sovacool.
Autorzy badań zwracają uwagę, że w wielu pakietach pomocowych, które mają rozruszać gospodarkę po pandemii uwzględniono olbrzymie kwoty dla przemysłu paliw kopalnych, motoryzacyjnego czy lotniczego. Jednak długotrwałe ożywienie gospodarcze może się nie udać, jeśli sektory te nie będą ponosiły całości kosztów, jakie są związane z ich działalnością, dodaje profesor Kim.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Sprawdzają się przewidywania naukowców, który prognozują, że już w roku 2016 średnia roczna koncentracja CO2 przekroczy 400 części na milion (ppm). W ubiegłym roku, w nocy z 7 na 8 maja, po raz pierwszy zanotowano, że średnia godzinowa koncentracja dwutlenku węgla przekroczyła 400 ppm. Tak dużo CO2 nie było w atmosferze od 800 000 – 15 000 000 lat.
W bieżącym roku możemy zapomnieć już o średniej godzinowej i znacznie wydłużyć skalę czasową. Czerwiec był trzecim z kolei miesiącem, w którym średnia miesięczna koncentracja była wyższa niż 400 części na milion.
Granica 400 ppm została wyznaczona symbolicznie. Ma nam jednak uświadomić, jak wiele węgla wprowadziliśmy do atmosfery. Z badań rdzeni lodowych wynika, że w epoce preindustrialnej średnia koncentracja dwutlenku węgla w atmosferze wynosiła 280 części na milion. W roku 1958, gdy Charles Keeling rozpoczynał pomiary na Mauna Loa w powietrzu znajdowało się 316 ppm. Wraz ze wzrostem stężenia CO2 rośnie też średnia temperatura globu. Naukowcy nie są zgodni co do tego, jak bardzo możemy ogrzać planetę bez narażania siebie i środowiska naturalnego na zbytnie niebezpieczeństwo. Zgadzają się zaś co do tego, że już teraz należy podjąć radykalne kroki w celu redukcji emisji gazów cieplarnianych. Paliwa niezawierające węgla muszą szybko stać się naszym podstawowym źródłem energii - mówi Pieter Tans z Narodowej Administracji Oceanicznej i Atmosferycznej.
Kwiecień 2014 roku był pierwszym, w którym przekroczono średnią 400 ppm dla całego miesiąca. Od maja, w związku z rozpoczęciem się najintensywniejszego okresu fotosyntezy na półkuli północnej, rozpoczął się powolny spadek koncentracji CO2, która w szczytowym momencie osiągnęła 402 ppm. Jednak przez cały maj i czerwiec średnia dzienna, a zatem i średnia miesięczna, nie spadły poniżej 400 części CO2 na milion. Eksperci uważają, że w trzecim tygodniu lipca koncentracja dwutlenku węgla spadnie poniżej 400 ppm. Do ponownego wzrostu dojdzie zimą i wzrost ten utrzyma się do maja.
Rośliny nie są jednak w stanie pochłonąć całego antropogenicznego dwutlenku węgla i wraz z każdym sezonem pozostawiają go w atmosferze coraz więcej. Dlatego też Pieter Tans przypuszcza, że w przyszłym roku pierwszym miesiącem, dla którego średnia koncentracja tego gazu przekroczy 400 ppm będzie już luty, a tak wysoki poziom CO2 utrzyma się do końca lipca, czyli przez sześć pełnych miesięcy. Od roku 2016 poziom 400 ppm będzie stale przekroczony.
Dopóki ludzie będą emitowali CO2 ze spalanego paliwa, dopóty poziom tego gazu w oceanach i atmosferze będzie się zwiększał - mówi Tans.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Polska ma bardzo małe zasoby wody pitnej, dowiadujemy się z opublikowanego przez GUS raportu „Polska na drodze zrównoważonego rozwoju”. Są one tak małe, że znajdują się poniżej poziomu bezpieczeństwa wodnego. Według ONZ krajami zagrożonymi niedoborami wody są te, w których zasoby świeżej wody wynoszą poniżej 1,7 tys. m3 na mieszkańca. W UE do takich krajów należą Polska, Czechy, Cypr i Malta.
W Unii Europejskiej najlepsza sytuacja pod względem zasobów wody słodkiej występuje w Chorwacji. Tam na mieszkańca przypada 28,8 tys. m3 wody. Kolejne na liście są Finlandia (20 tys. m3), Szwecja (19,3 tys. m3) oraz Łotwa (18,9 tys. m3), a pierwszą piątkę zamyka Słowenia (15,5 tys. m3). Z kolei cztery kraje znajdują się poniżej poziomu bezpieczeństwa wodnego. Są to Polska (1,6 tys. m3), Czechy (1,5 tys. m3), Cypr (0,4 tys. m3) oraz Malta (0,2 tys. m3).
Głównym źródłem zaopatrzenia w wodę są w naszym kraju wody powierzchniowe. W 2019 r. pobraliśmy 7,4 km3 wód powierzchniowych oraz 1,8 km3 wód podziemnych. Większość, bo aż 70% zużył przemysł, 20% spożytkowano na potrzeby gospodarki komunalnej, a 10% wykorzystuje się do nawodnień w rolnictwie, leśnictwie oraz napełniania stawów rybnych.
W naszych rzekach płynie też woda gorszej jakości niż średnia europejska. Do określenia jakości wód używa się pomiaru biochemicznego zapotrzebowania tlenu (BZT). Pokazuje on, ile tlenu potrzebują mikroorganizmy, by rozłożyć substancje organiczne znajdujące się w wodzie. To wskaźnik, który pokazuje też, jak ścieki są podatne na biologiczne oczyszczanie.
Im wyższy poziom BZT, tym większe zanieczyszczenie. W Polsce do rozkładu substancji organicznych potrzebne jest 2,74 mg tlenu na litr wody. To znacznie więcej niż średnia w Europie, która wynosi 2 mg/litr. Pod względem zanieczyszczenia jesteśmy niewiele lepsi od krajów o najbardziej zanieczyszczonych rzekach jak Rumunia czy Cypr, gdzie BTZ to 3mg/l. Sporo nam za to brakuje do prymusów – Irlandii i Słowenii. W krajach tych BTZ to >1 mg/l.
Z dobrych wiadomości można dodać, że nie grozi nam stres wodny. W Polsce wykorzystujemy 6,87% odnawialnych zasobów wody pitnej. To co prawda więcej niż w roku 2010, kiedy odsetek ten wynosił 5,62%, ale wciąż mniej niż średnia dla Europy wynosząca 8,39%. Za wysoki poziom stresu wodnego uznaje się poziom przekraczający 20%. Jednak wskaźnik ten nie uwzględnia przestrzennego i sezonowego zróżnicowania dostępności do wody.
Najlepiej ilustruje to przykład całego globu. W skali świata ludzie pobierają rocznie 17% odnawialnych zasobów słodkiej wody. Nie można mówić więc o stresie wodnym. Jednak różnice regionalne są dramatyczne. W Afryce Północnej pobierane jest niemal 102,9% odnawialnych zasobów wody pitnej. Na częściej sytuacja się poprawia, gdyż kilka lat temu było to o 5 punktów procentowych więcej. Jednak niedobory wody zaczynają grozić Azji Środkowej, gdzie pobiera się 87,9% odnawialnych zasobów wody pitnej, podczas gdy jeszcze niedawno było to 79,5%. Z problemami może borykać się też Azja Południowa, gdzie pobór ten wynosił 70,7% w roku 2017, podczas gdy w roku 2015 było to 63,2%.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.