Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
W przeszłości Ziemia posiadała pierścień, który wywołał krótkotrwałe zlodowacenie?
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Jeszcze do niedawna naukowcy potrafili określi miejsce pochodzenia jedynie 6% meteorytów znalezionych na Ziemi. Teraz naukowcy z francuskiego Narodowego Centrum Badań Naukowych (CNRS), Europejskiego Obserwatorium Południowego i czeskiego Uniwersytetu Karola wykazali, że 70% wszystkich znalezionych na naszej planecie meteorytów pochodzi z trzech młodych rodzin asteroid.
Rodziny te to wyniki trzech zderzeń, do których doszło w głównym pasie asteroid 5,8, 7,5 oraz 40 milionów lat temu. Badacze określili też źródło innych meteorytów, dzięki czemu możemy teraz zidentyfikować miejsce pochodzenia ponad 90% skał, które z kosmosu spadły na Ziemię. Wyniki badań zostały opublikowane w trzech artykułach. Jeden ukazał się łamach Astronomy and Astrophysics, a dwa kolejne na łamach Nature.
Wspomniane rodziny asteroid to – od najmłodszej do najstarszej – Karin, Koronis i Massalia. Wyróżnia się Massalia, która jest źródłem 37% meteorytów. Dotychczas na Ziemi odnaleziono podczas 700 000 okruchów z kosmosu. Jedynie 6% z nich zidentyfikowano jako achondryty pochodzące z Księżyca, Marsa lub Westy, jednego z największych asteroid głównego pasa. Źródło pozostałych 94%, z których większość do chondryty, pozostawało nieznane.
Jak to jednak możliwe, że źródłem większości znalezionych meteorytów są młode rodziny asteroid? Autorzy badań wyjaśniają, że rodziny takie charakteryzują się dużą liczbą niewielkich fragmentów powstałych w wyniku niedawnych kolizji. Ta obfitość zwiększa prawdopodobieństwo kolejnych zderzeń, co w połączeniu z duża mobilnością tych szczątków, powoduje, że mogą zostać wyrzucone z głównego pasa asteroid, a część z nich poleci w kierunku Ziemi. Starsze rodziny asteroid nie są tak liczne. Przez wiele milionów lat mniejsze fragmenty, ale na tyle duże, że mogłyby spaść na Ziemię, zniknęły w wyniku kolejnych zderzeń i ucieczki z pasa asteroid.
Określenie pochodzenia większości meteorytów było możliwe dzięki teleskopowym badaniom składu większości rodzin asteroid w głównym pasie oraz zaawansowanymi symulacjami komputerowymi, podczas których badano dynamikę tych rodzin.
Autorzy badań określili też pochodzenie wielkich asteroid, takich jak Ryugu czy Bennu. Okazało się, że pochodzą one od tego samego przodka co rodzina asteroid Polana.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Gdy naukowcy z University of Aberdeen przystępowali do wykopalisk na terenie piktyjskiego fortu w miasteczku Burghead na północnych wybrzeżach Szkocji, nie spodziewali się znaleźć niczego szczególnego. Pozostałości osadnictwa Piktów zostały zniszczone w XIX wieku, kiedy większość fortu znalazła się pod zabudową miasteczka, a kamienie z fortu wykorzystano podczas współczesnych prac budowlanych. Jak się jednak okazało, nawet na zniszczonym stanowisku archeologicznym można dokonać niezwykle interesującego odkrycia.
Do pomocy w wykopaliskach zaproszono ochotników. Wśród nich był emerytowany inżynier John Ralph. Przez kilka tygodni kilkukrotnie trafiał na coś interesującego, tylko po to, by usłyszeć od archeologów, że ma talent do wyszukiwania „świecących kamyków”. Gdy więc w ostatnim dniu wykopalisk znowu coś znalazł, z niewielką nadzieją pokazał to innemu ochotnikowi, a ten stwierdził, że jednak warto, by zobaczyli to archeolodzy.
Kierujący wykopaliskami profesor Gordon Noble mówi, że John pokazał mu coś niewiarygodnego. Nawet przed oczyszczeniem wiedzieliśmy, że to coś bardzo ekscytującego, co po tysiącu lat leżenia w ziemi błyszczało jak ozdoba wysadzana granatem, mówi uczony. Okazało się, że inżynier znalazł kunsztownie zdobiony piktyjski pierścień.
Dotychczas odkryto pojedyncze pierścienie Piktów. Zwykle stanowią one część zestawu skarbów, które celowo zakopano w ziemi. Nie spodziewaliśmy się znaleźć czegoś podobnego, co po prostu leżało sobie na ziemi w miejscu, w którym niegdyś stał dom. To mało interesujący obszar, więc – jak i w podobnych przypadkach – prace w tym miejscu zostawiliśmy na ostatni dzień wykopalisk, stwierdza uczony.
Pierścień trafił w ręce specjalistów z Post-excavation Service w National Museum of Scotland, gdzie zostanie poddany szczegółowej analizie. Specjaliści spróbują się dowiedzieć, kto mógł być jego właścicielem, do jakich celów pierścień był używany i w jakich okolicznościach mógł zostać zgubiony. A przede wszystkim, czy został wykonany na miejscu. Inne dowody wskazują, że w forcie prowadzono prace metalurgiczne. Jeśli tamtejsi rzemieślnicy potrafili wykonać wysokiej jakości pierścień, to badany fort mógł być jeszcze ważniejszym miejscem, niż dotychczas sądzono.
Jeszcze pod koniec XVIII wieku fort w Burghead był jedną z najbardziej imponujących starożytnych struktur obronnych w Szkocji. Pierwsza drewniana struktura obronna powstała tam jeszcze zanim Rzymianie opuścili Brytanię, być może pod koniec II wieku. W VI i VII wieku Piktowie wzmocnili to miejsce kamiennymi fortyfikacjami o wysokości ponad 6 i grubości 7-8 metrów. W zachodniej części najprawdopodobniej znajdowała się siedziba władcy. Architektura fortu – trzy linie ziemnych wałów obronnych poprzedzających główny wał – jest typowa dla celtyckich umocnień znanych z Francji i Brytanii. To nasuwa przypuszczenie, że Piktowie zasiedlili opuszczone umocnienia Celtów i je rozbudowali.
Na cmentarzu współczesnego Burghead znaleziono kamienne rzeźby datowane na rok około 800, które prawdopodobnie stanowiły część chrześcijańskich krzyży. Piktowie przyjęli chrześcijaństwo za sprawą św. Kolumbana (VI wiek), obecność krzyży świadczyć może, że fort był też centrum religijnym. Na ten sam okres co krzyże, datuje się ślady napraw umocnień fortu. To czas najazdów wikingów. I to prawdopodobnie oni położyli kres istnieniu potężnego piktyjskiego fortu.
Roczniki Ulsterskie zanotowały pod datą 839 roku, że poganie [wikingowie - red.] wygrali bitwę z ludźmi z Fortriu [królestwo na północy kraju Piktów - red.]. Eóganán syn Aengusa [Eogán mac Óengusa, król Piktów - red.], Bran syn Aengusa i Aed syn Boanty i niemal niezliczona liczba innych wówczas poległa. Z Roczników dowiadujemy się, że po bitwie wikingowie spalili miejsca znane jako Ferna oraz Corcach. Ich lokalizacja nie jest znana, jednak niewykluczone, że jednym z nich był właśnie fort w Burghead. W tym samym mniej więcej czasie kończą się ślady osadnictwa w tym miejscu.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Krążący wokół Jowisza Ganimedes to największy księżyc w Układzie Słonecznym. Jest większy od najmniejszej planety, Merkurego. Na Ganimedesie znajduje się też największa w zewnętrznych częściach Układu Słonecznego struktura uderzeniowa. Planetolog Naoyuki Hirata z Uniwersytetu w Kobe przeanalizował jej centralną część i doszedł do wniosku, że w Ganimedesa uderzyła asteroida 20-krotnie większa, niż ta, która zabiła dinozaury. W wyniku uderzenia oś księżyca uległa znaczącej zmianie.
Ganimedes, podobnie jak Księżyc, znajduje się w obrocie synchronicznym względem swojej planety. To oznacza, że jest do niej zwrócony zawsze tą samą stroną. Na znacznej części jego powierzchni widoczne są ślady tworzące kręgi wokół konkretnego miejsca. W latach 80. naukowcy doszli do wniosku, że to dowód na dużą kolizję. Wiemy, że powstały one w wyniku uderzenia asteroidy przed 4 miliardami lat, ale nie byliśmy pewni, jak poważne było to zderzenie i jaki miało wpływ na księżyc, mówi Naoyjuki Hirata.
Japoński uczony jako pierwszy zwrócił uwagę, że miejsce uderzenia wypada niemal idealnie na najdalszym od Jowisza południku Ganimedesa. Z badan Plutona przeprowadzonych przez sondę New Horizons wiemy, że uderzenie w tym miejscu doprowadziło do zmiany orientacji osi planety, więc tak samo mogło stać się w przypadku Ganimedesa. Hirata specjalizuje się w symulowaniu skutków uderzeń w księżyce i satelity, wiedział więc, jak przeprowadzić odpowiednie obliczenia.
Na łamach Scientific Reports naukowiec poinformował, że asteroida, która uderzyła w Ganimedesa, miała prawdopodobnie średnicę około 300 kilometrów i utworzyła krater przejściowy o średnicy 1400–1600 kilometrów. Krater przejściowy to krater uderzeniowy istniejący przed powstaniem krateru właściwego, czyli misy wypełnionej materiałem powstałym po uderzeniu. Z przeprowadzonych obliczeń wynika, że tylko tak duża asteroida mogła przemieścić wystarczającą ilość masy, by doszło do przesunięcia osi Ganimedesa na jej obecną pozycję.
Przypomnijmy, że 14 kwietnia ubiegłego roku wystartowała misja Juice (Jupiter Icy Moons Explorer) Europejskiej Agencji Kosmicznej. Ma ona zbadać trzy księżyce Jowisza: Kallisto, Europę i Ganimedesa. Na jej pokładzie znalazły się polskie urządzenia, wysięgniki firmy Astronika, na których zamontowano sondy do pomiarów plazmy. Wszystkie trzy księżyce posiadają zamarznięte oceany. To najbardziej prawdopodobne miejsca występowania pozaziemskiego życia w Układzie Słonecznym. W lipcu 2031 roku Juice ma wejść na orbitę Jowisza, a w grudniu 2034 roku znajdzie się na orbicie Ganimedesa i będzie badała ten księżyc do września 2035 roku.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Tysiące kilometrów pod naszymi stopami, wewnątrz płynnego jądra Ziemi, znajduje się nieznana dotychczas struktura, donoszą naukowcy z Australian National University (ANU). Struktura ma kształt torusa (oponki), znajduje się na niskich szerokościach geograficznych i jest równoległa do równika. Nikt wcześniej jej nie zauważył.
Jądro Ziemi składa się z dwóch warstw, sztywnej wewnętrznej oraz płynnej zewnętrznej. Nowo odkryta struktura znajduje się w górnych partiach jądra zewnętrznego, gdzie jądro spotyka się z płaszczem ziemskim.
Współautor badań, geofizyk Hrvoje Tkalčić mówi, że fale sejsmiczne wędrują wolniej w nowo odkrytym regionie, niż w reszcie jądra zewnętrznego. Region ten znajduje się na płaszczyźnie równikowej, na niskich szerokościach geograficznych i ma kształt donuta. Nie znamy jego dokładnej grubości, ale uważamy, że rozciąga się on na kilkaset kilometrów poniżej granicy jądra i płaszcza, wyjaśnia uczony.
Uczeni z ANU podczas badań wykorzystali inną technikę niż tradycyjne obserwacje fal sejsmicznych w ciągu godziny po trzęsieniu. Badacze przeanalizowali podobieństwa pomiędzy kształtami fal, które docierały do nich przez wiele godzin od wstrząsów. Zrozumienie geometrii rozprzestrzeniania się fal oraz sposobu, w jaki przemieszczają się przez jądro zewnętrzne, pozwoliło nam zrekonstruować czasy przejścia przez planetę i wykazać, że ten nowo odkryty region sejsmiczny cechuje wolniejsze przemieszczanie się fal, stwierdza Tkalčić.
Jądro zewnętrzne zbudowane jest głównie z żelaza i niklu. To w nim, dzięki ruchowi materiału, powstaje chroniące Ziemię pole magnetyczne, które umożliwiło powstanie złożonego życia. Naukowcy sądzą, że szczegółowe poznanie budowy zewnętrznego jądra, w tym jego składu chemicznego, jest kluczowe dla zrozumienia pola magnetycznego i przewidywania tego, kiedy może potencjalnie osłabnąć.
Nasze odkrycie jest istotne, gdyż wolniejsze rozprzestrzenianie się fal sejsmicznych w tym regionie wskazuje, że znajduje się tam dużo lekkich pierwiastków. Te lżejsze pierwiastki, wraz z różnicami temperatur, pomagają w intensywnym mieszaniu się materii tworzącej jądro zewnętrzne. Pole magnetyczne to podstawowy element potrzebny do podtrzymania istnienia życia na powierzchni planety, zwraca uwagę profesor Tkalčić.
« powrót do artykułu -
przez KopalniaWiedzy.pl
We wrześniu 2022 roku NASA przeprowadziła pierwszy w historii, i od razu udany, test obrony Ziemi przed asteroidami. W ramach misji DART niewielki pojazd uderzył w asteroidę Dimorphos i zmienił jej orbitę wokół asteroidy Didymos. Od tamtego czasu naukowcy badają obie asteroidy oraz skutki testu. Na łamach Nature Communications ukazało się właśnie 5 interesujących artykułów na temat Dimorphos i Didymos.
Dzięki obrazom przekazanym przed zderzeniem przez DART i towarzyszący mu pojazd LICIACube naukowcy z Applied Physics Laboratory na Uniwersytecie Johnsa Hopkinsa mogli przeanalizować geologię obu asteroid. Olivier Barnouin i Ronald-Louis Ballouz stwierdzili, że mniejsza Dimorphos była pokryta głazami o różnych rozmiarach, natomiast Didymos jest bardziej gładka na mniejszych szerokościach i kamienista na większych, ma też więcej kraterów. Obaj autorzy uważają, że Dimorphos pochodzi od Didymos, od której się oderwała. Istnieją bowiem naturalne procesy, które przyspieszają obrót niewielkich asteroid. Mogą one być o odpowiedzialne za nadawanie im kształtu i odrywanie się materiału z ich powierzchni. Barnouin i Ballouz uważają, że powierzchnia Didymos ukształtowała się 12,5 miliona lat temu, a Dimorphos zyskała swój obecny kształt przed mniej niż 300 000 lat.
Autorami kolejnej pracy są Maurizio Pajola z włoskiego Narodowego Instytutu Astrofizyki (INAF) i jego międzynarodowy zespół naukowy. Tutaj porównano kształt, rozmiary oraz rozkład głazów na powierzchni obu asteroid. Badacze stwierdzli, że Dimorphos formowała się etapami, prawdopodobnie z materiału pochodzącego z Didymos. Wyniki takie potwierdzają dominującą teorię, która mówi, że niektóre układy podwójne asteroid powstają w wyniku kumulowania się materiału z większej asteroidy na mniejszej, która staje się jej księżycem.
Analizy zmęczenia cieplnego – stopniowego osłabiania i pękania materiału powodowanego przez zmiany temperatury – podjęła się Alice Lucchetti z INAF. Wraz z zespołem stwierdziła, że w wyniku takiego procesu tempo pękania powierzchni Dimorphos i oddzielania się od niej głazów może zachodzić znacznie szybciej, niż dotychczas sądzono.
Naomi Murdoch z Uniwersytetu w Tuluzie oceniła nośność gruntu Didymos i stwierdziła, że jest ona co najmniej 1000-krotnie mniejsza niż suchego piasku czy gruntu na Księżycu. To bardzo ważny parametr, który pozwala nam zrozumieć i przewidzieć reakcję powierzchni na, na przykład, uderzenie pojazdu, który ma zmienić orbitę asteroidy.
Autorem ostatniego z opublikowanych badań jest kolega Murdoch z uczelni, Colas Robin. Wraz z zespołem analizował on głazy znajdujące się na powierzchni Dimorphos i porównywał je z głazami z asteroid Itokawa, Ryugu oraz Bennu. Naukowcy zauważyli podobieństwa sugerujące, że wszystkie te asteroidy powstały i ewoluowały w podobny sposób.
Wspomniane badania pozwalają nam lepiej zrozumieć pochodzenie, ewolucję i budowę Didymos i Dimorphos. Możemy też dowiedzieć się z nich, dlaczego misja DART okazała się tak wielkim sukcesem. Wiedza ta przyda się już wkrótce. Jeszcze w bieżącym roku wystartuje misja Hera Europejskiej Agencji Kosmicznej, która poleci do układu Didymos-Dimorphos. W 2026 roku wejdzie ona na orbitę asteroid i będzie je szczegółowo badała, uwzględniają przy tym wpływ misji DART.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.