Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Poznaliśmy najcięższe jądro antymaterii, antyhiperwodór-4
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Polska fizyk, Barbara Latacz, jest główną autorką badań, w ramach których naukowcy skupieni w projekcie BASE w CERN zaprezentowali pierwszy w historii kubit z antymaterii. Na łamach pisma Nature Latacz i jej koledzy opisali, jak przez niemal minutę utrzymywali w pułapce antyproton oscylujący pomiędzy dwoma stanami kwantowymi. Badania te pozwolą na znaczne udoskonalenie metod badania różnic między materią i antymaterią.
Proton i antyproton mogą przyjmować dwie wartości spinu. Pomiary zmiany tej wartości pozwalają na precyzyjne testowanie podstawowych praw przyrody, na przykład takich jak symetria CPT (ładunku, parzystości i czasu). Wskazuje ona, że materia i antymateria zachowują się identycznie, jednak jest to sprzeczne z obserwacjami, zgodnie z którymi materii we wszechświecie jest znacznie więcej niż antymaterii.
Spójne kontrolowane zmiany stanu kwantowego obserwowano dotychczas albo w dużych grupach cząstek, albo w przypadku pojedynczych uwięzionych jonów. Nie udało się tego jednak zrobić dla pojedynczego swobodnego momentu magnetycznego jądra, czyli np. spinu pojedynczego protonu. Teraz dokonali tego naukowcy z projektu BASE.
W ramach eksperymentu BASE badane są antyprotony dostarczane przez fabrykę antymaterii w CERN-ie. To jedyne miejsce na Ziemi, gdzie produkuje się niskoenergetyczne antyprotony. Są one przechowywane w elektromagnetycznych pułapkach Penninga i pojedynczo przesyłane do systemu pułapek, w których bada się m.in. ich spin.
Już wcześniej zespół BASE dowiódł, że wartości momentów magnetycznych protonów i antyprotonów są identyczne z dokładnością do kilku części na miliard. Najmniejsza różnica wskazywałaby na naruszenie symetrii CPT, a to oznaczałoby istnienie fizyki poza Modelem Standardowym. Dotychczas jednak badania były zakłócane przez fluktuacje pola magnetycznego. W ostatnim czasie naukowcom udało się znakomicie ulepszyć eksperyment i zapobiec utracie stanu kwantowego, dzięki czemu przez 50 sekund można było badać spin antyprotonu.
To pierwszy kubit zbudowany z antymaterii. Daje nam to możliwość zastosowania całego zestawu metod do precyzyjnego badania pojedynczych układów materii i antymaterii, mówi Stefan Ulmer z BASE. Uczony dodaje, że nowe osiągnięcie pozwoli na badanie momentu pędu antyprotonu nawet ze 100-krotnie większą precyzją, niż dotychczas.
Jeszcze bardziej precyzyjne pomiary będą możliwe dzięki projektowi BASE-STEP, o którego pierwszym udanym teście poinformowano w maju bieżącego roku. Umożliwia on bezpieczne transportowanie antyprotonów uzyskanych w CERN-ie do spokojniejszych środowisk i bardziej precyzyjnych laboratoriów. Gdy już system będzie w pełni działał, nasz nowy przenośny układ pułapek Penninga, napełniony antyprotonami z fabryki, będzie transportowany za pomocą BASE-STEP, co pozwoli na nawet 10-krotne wydłużenie czasu koherencji antyprotonu. To będzie przełom w badaniach nad materią barionową, mówi Barbara Latacz.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W przeszłości Mars posiadał silne pole magnetyczne. Obecnie pozostały po nim ślady w marsjańskich skałach. Są to jednak ślady nietypowe. Sonda Mars Global Surveyor już w 1999 roku zauważyła, że skały na południowej półkuli Marsa noszą ślady silnego oddziaływania pola magnetycznego. Na półkuli północnej tak silnych sygnałów nie zauważono. Zjawisko to od dawna zastanawiało naukowców. Teraz uczeni z Instytutu Geofizyki University of Texas zaproponowali rozwiązanie zagadki.
Ostatnie pomiary wykonane przez misję InSight pokazują, że jądro Marsa jest mniej gęste niż sądzono. To wskazuje, że Mars prawdopodobnie nigdy nie miał stałego jądra, czytamy na łamach Geophysical Research Letters. Zespół Chi Yana opisał wyniki swoich symulacji komputerowych, z których wynika, że całkowicie płynne jądro, bez części z ciała stałego, dobrze wyjaśnia widoczną różnicę w zapisie oddziaływania pola magnetycznego na różnych półkulach. Jeśli nie ma sztywnego wewnętrznego jądra, ze znacznie większą łatwością powstaje pole magnetyczne obejmujące tylko jedną półkulę. To zaś mogło mieć wpływ zarówno na działanie pola magnetycznego Marsa oraz jego możliwość utrzymania atmosfery, wyjaśnia Yan.
Dotychczas większość badaczy zakładała, że jądro Marsa jest podobne do ziemskiego i składa się ze stałego jądra wewnętrznego oraz otaczającego je płynnego jądra zewnętrznego. Badania misji InSight pokazały, że jądro Marsa składa się z lżejszych pierwiastków niż się spodziewano. To zaś oznacza, że jego temperatura topnienia jest inna niż temperatura topnienia jądra Ziemi i prawdopodobnie jest ono całkowicie płynne. Jeśli zaś jądro Czerwonej Planety jest płynne obecnie, to niemal na pewno było płynne 4 miliardy lat temu, gdy Mars posiadał silne pole magnetyczne, wyjaśnia profesor Sabine Stanley z Uniwersytetu Johnsa Hopkinsa.
Uczeni postanowili przetestować tę hipotezę i stworzyli model, który symulował całkowicie płynne jądro Marsa. Uruchomili go kilkanaście razy, za każdym tak ustawiając parametry symulacji, by płaszcz planety na półkuli północnej był nieco cieplejszy niż na półkuli południowej. Okazało się, że przy pewnej różnicy temperatur ciepło uciekające z jądra było uwalniane tylko przez chłodniejszą półkulę południową, co powodowało pojawienie się na niej silnego pola magnetycznego. Nie wiemy, czy to wyjaśnia historię pola magnetycznego Marsa, ale niezwykle ekscytujące jest samo stwierdzenie, że na planecie może istnieć pole magnetyczne obejmujące tylko jej część, a struktura symulowanego jądra pasuje do badań przeprowadzonych przez InSight, mówi Stanley.
Zdaniem naukowców, ich badania to przekonująca alternatywa dla hipotezy mówiącej, że ślady działania pola magnetycznego na półkuli północnej zostały zniszczone przez uderzenia asteroid.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W Wielkim Zderzaczu Hadronów (LHC) zarejestrowano najbardziej masywne hiperjądro antymaterii, jakie dotychczas odnotowano w tym akceleratorze. Badacze z eksperymentu ALICE wpadli na ślad antyhiperhelu-4, czyli odpowiednika hiperhelu-4 ze świata materii. Nieznaną dotychczas cząstkę zauważono w pochodzących ze zderzeń jąder ołowiu danych z 2018 roku.
Podczas zderzeń ciężkich jonów w LHC powstaje plazma kwarkowo-gluonowa. Ten egotyczny stan materii wypełniał wszechświat przez jedną milionową sekundy po Wielkim Wybuchu. Badanie tej plazmy pomaga nam zrozumieć, w jaki sposób z kwarków i gluonów powstały hadrony oraz dlaczego we współczesnym wszechświecie istnieje nierównowaga pomiędzy materią i antymaterią.
Hiperjądra to egzotyczne jądra powstałe z protonów, neutronów i hiperonów. Te ostatnie to niestabilne cząstki zawierające co najmniej jedne kwark dziwny, ale nie zawierające kwarka górnego i dolnego. Pierwsze hiperjądro odkryli w 1952 roku Marian Danysz i Jerzy Pniewski z Uniwersytetu Warszawskiego. Od ich zaobserwowania w promieniowaniu kosmicznym minęło zatem ponad 70 lat, a wciąż stanowią one tajemnicę dla nauki. Rzadko można je zaobserwować w naturze i bardzo trudno jest je badać w laboratorium.
W zderzeniach ciężkich jonów powstaje sporo hiperjąder, jednak dotychczas zaobserwowano trzy. Pierwszym był hipertryton i jego partner z antymaterii, a antyhipertryton. Hipertryton składał się z protonu, neutronu i hiperonu lambda, więc antyhipertryton składał się z antyprotonu, antyneutronu i antylambda.
Niecałe cztery miesiące temu informowaliśmy o znalezieniu najcięższego jądra antymaterii, antyhiperwodoru-4, zbudowanego z antyprotonu, dwóch antyneutronów i antyhiperonu lambda. Teraz naukowcy z ALICE poinformowali, że w 2018 roku podczas zderzeń jonów ołowiu przy energii 5,02 TeV pojawiły się dane wskazujące na powstanie antyhiperhelu-4. Jest ono złożone z dwóch antyprotonów, antyneutronu i antyhiperonu lambda. Poziom ufności obserwacji wynosi 3,5 sigma. To zbyt mało, by mówić o odkryciu, jednak na tyle dużo, że naukowcy uznali, iż warto o tym poinformować i prowadzić dalsze badania.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Tysiące kilometrów pod naszymi stopami, wewnątrz płynnego jądra Ziemi, znajduje się nieznana dotychczas struktura, donoszą naukowcy z Australian National University (ANU). Struktura ma kształt torusa (oponki), znajduje się na niskich szerokościach geograficznych i jest równoległa do równika. Nikt wcześniej jej nie zauważył.
Jądro Ziemi składa się z dwóch warstw, sztywnej wewnętrznej oraz płynnej zewnętrznej. Nowo odkryta struktura znajduje się w górnych partiach jądra zewnętrznego, gdzie jądro spotyka się z płaszczem ziemskim.
Współautor badań, geofizyk Hrvoje Tkalčić mówi, że fale sejsmiczne wędrują wolniej w nowo odkrytym regionie, niż w reszcie jądra zewnętrznego. Region ten znajduje się na płaszczyźnie równikowej, na niskich szerokościach geograficznych i ma kształt donuta. Nie znamy jego dokładnej grubości, ale uważamy, że rozciąga się on na kilkaset kilometrów poniżej granicy jądra i płaszcza, wyjaśnia uczony.
Uczeni z ANU podczas badań wykorzystali inną technikę niż tradycyjne obserwacje fal sejsmicznych w ciągu godziny po trzęsieniu. Badacze przeanalizowali podobieństwa pomiędzy kształtami fal, które docierały do nich przez wiele godzin od wstrząsów. Zrozumienie geometrii rozprzestrzeniania się fal oraz sposobu, w jaki przemieszczają się przez jądro zewnętrzne, pozwoliło nam zrekonstruować czasy przejścia przez planetę i wykazać, że ten nowo odkryty region sejsmiczny cechuje wolniejsze przemieszczanie się fal, stwierdza Tkalčić.
Jądro zewnętrzne zbudowane jest głównie z żelaza i niklu. To w nim, dzięki ruchowi materiału, powstaje chroniące Ziemię pole magnetyczne, które umożliwiło powstanie złożonego życia. Naukowcy sądzą, że szczegółowe poznanie budowy zewnętrznego jądra, w tym jego składu chemicznego, jest kluczowe dla zrozumienia pola magnetycznego i przewidywania tego, kiedy może potencjalnie osłabnąć.
Nasze odkrycie jest istotne, gdyż wolniejsze rozprzestrzenianie się fal sejsmicznych w tym regionie wskazuje, że znajduje się tam dużo lekkich pierwiastków. Te lżejsze pierwiastki, wraz z różnicami temperatur, pomagają w intensywnym mieszaniu się materii tworzącej jądro zewnętrzne. Pole magnetyczne to podstawowy element potrzebny do podtrzymania istnienia życia na powierzchni planety, zwraca uwagę profesor Tkalčić.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Po raz pierwszy udało się bezpośrednio zaobserwować wpływ grawitacji na antymaterię. Fizycy z CERN eksperymentalnie wykazali, że grawitacja działa na antymaterię tak, jak i na materię – antyatomy opadają na źródło grawitacji. Nie jest to niczym niespodziewanym, różnica w oddziaływaniu grawitacji na materię i antymaterię miałaby bardzo poważne implikacje dla fizyki. Jednak bezpośrednia obserwacja tego zjawiska jest czymś, czego fizycy oczekiwali od dziesięcioleci. Oddziaływanie grawitacyjne jest bowiem niezwykle słabe, zatem łatwo może zostać zakłócone.
Naukowcy z CERN pracujący przy eksperymencie ALPHA wykorzystali atomy antywodoru, które są stabilne i elektrycznie obojętne, do badania wpływu grawitacji na antymaterię. Uczeni utworzyli antywodór łącząc antyprotony – uzyskane w urządzeniach AD i ELENA pracujących w Antimatter Factory – z pozytonami (antyelektronami) z radioaktywnego sodu-22. Atomy antywodoru umieszczono następnie w pułapce magnetycznej, która chroniła je przed wejściem w kontakt z materią i anihilacją. Całość umieszczono w niedawno skonstruowanym, specjalnym urządzeniu o nazwie ALPHA-g, które pozwala na śledzenie losu atomów po wyłączeniu pułapki.
Symulacje komputerowe wykazywały, że – w przypadku materii – około 20% atomów powinno opuścić pułapkę przez górną jej część, a około 80% – przez dolną. Naukowcy wielokrotnie przeprowadzili eksperymenty z użyciem antymaterii, uwzględniając przy tym różne ustawienia pułapki i różne możliwe oddziaływania poza oddziaływaniami grawitacyjnymi. Po uśrednieniu wyników eksperymentów okazało się, że antymateria zachowuje się tak, jak materia. Około 20% atomów antywodoru uleciało z pułapki górą, a około 80% – dołem.
Potrzebowaliśmy 30 lat by nauczyć się, jak stworzyć antyatomy, jak utrzymać je w pułapce, jak je kontrolować i jak je uwalniać z pułapki, by oddziaływała na nie grawitacja. Następnym etapem naszych badań będą jak najbardziej precyzyjne pomiary przyspieszenia opadających antyatomów. Chcemy sprawdzić, czy rzeczywiście atomy i antyatomy opadają w taki sam sposób, mówi Jeffrey Hangst, rzecznik prasowy eksperymentu ALPHA.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.