Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Poznaliśmy najcięższe jądro antymaterii, antyhiperwodór-4

Rekomendowane odpowiedzi

Członkowie międzynarodowego zespołu badawczego STAR Collaboration, jednego z czterech projektów prowadzonych w Relatywistycznym Zderzaczu Ciężkich Jonów (RHIC) w Brookhaven National Laboratory – w którym odtwarzane są warunki, jakie panowały we wczesnym wszechświecie – ogłosili odkrycie najcięższego jądra antymaterii. Składa się ono z antyprotonu, dwóch antyneutronów oraz antyhiperonu i zostało nazwane antyhiperwodorem-4. Odkrycia dokonano analizując wyniki 6 miliardów zderzeń jąder atomowych.

Antymateria ma, z wyjątkiem przeciwnego ładunku elektrycznego, te same właściwości co materia: tę samą masę, taki sam czas życia przed rozpadem, wchodzi w takie same interakcje, wyjaśnia Junlin Wu, świeżo upieczony magister ze Wspólnego Wydziału Fizyki Jądrowej Uniwersytetu w Lanzhou i Instytutu Współczesnej Fizyki Chińskiej Akademii Nauk. Wciąż za to nie wiemy, i jest to jedna z najważniejszych zagadek współczesnej fizyki, dlaczego wszechświat zbudowany jest głównie z materii, a nie antymaterii i dzieje się tak mimo tego, że podczas Wielkiego Wybuchu powstało tyle samo antymaterii co materii.

RHIC to idealne miejsce do prób szukania odpowiedzi na to pytanie. To pierwszy i jeden z zaledwie dwóch – drugim jest Wielki Zderzacz Hadronów (LHC) – akcelerator, w którym zderzane są ciężkie jony. W urządzeniu zderzane są ciężkie jony pędzące z prędkością bliską prędkości światła. Po zderzeniu powstaje mieszanina kwarków i gluonów, w której biorą początek nowe cząstki. I tak, jak we wczesnych wszechświecie, cząstki materii i antymaterii rodzą się tam w niemal równych proporcjach. Badacze mają nadzieję, że badając te cząstki znajdą przyczynę, dla której symetria została zachwiana na rzecz wszechświata zbudowanego z materii.

U podstaw naszych eksperymentów leży proste przypuszczenie, że jeśli chcemy poznać przyczynę asymetrii materii i antymaterii, to musimy najpierw odkryć nowe cząstki antymaterii, mówi fizyk Hao Qiu, doradca naukowy Junlina Wu.

Naukowcy ze STAR Collaboration już wcześniej znajdowali antymaterię w danych ze zderzeń w RHIC. W 2010 roku odkryli antyhipertryt, pierwsze jądro antymaterii zawierającą hiperon. Hiperony to cząstki, które zawierają co najmniej jeden kwark dziwny, ale nie zawierające kwarka górnego i dolnego. Wchodzą one w skład hiperjąder. Pierwsze hiperjądro odkryli w 1952 roku Marian Danysz i Jerzy Pniewski z Uniwersytetu Warszawskiego.

Odkrycie antyhiperwodoru-4 oznacza nie tylko znalezienie najcięższego jądra antymaterii, ale również trafienie na igłę w stogu siana. Hiperjądra żyją bowiem tak długo, jak istnieje hiperon, a czas jego życia nie przekracza 10-10 sekundy. Ponadto, by powstał antyhiperwodór-4, z zupy kwarkowo-gluonowej powstałej po zderzeniu ciężkich jąder w RHIC muszą wyłonić się wszystkie cztery składowe nowego jądra, muszą one powstać w odpowiednim miejscu, przemieszczać się w tym samym kierunku, by w odpowiednim czasie się połączyć i na krótko utworzyć antyhiperwodór-4.

Zidentyfikowanie nowej cząstki antymaterii było możliwe dzięki zidentyfikowaniu cząstek, na które się ona rozpadła. Jednym z produktów rozpadu był antyhel-4, drugim jest pion o ładunku dodatnim. Jako że już wcześniej odkryliśmy antyhel-4, użyliśmy tej samej metody do jego zidentyfikowania, a następnie dokonaliśmy rekonstrukcji cząstki macierzystej, wykorzystując w tym celu π+, wyjaśnia Wu. Rekonstrukcja taka polega na śledzeniu wstecz trasy przemieszczania się antyhelu-4 i π+, co pozwala stwierdzić, czy obie cząstki pojawiły się w tym samym punkcie. Nie było to łatwe zadanie. Naukowcy musieli przeanalizować miliardy zderzeń. Każdy zauważony antyhel-4 mógł mieć coś wspólnego nawet z 1000 pionów. Trzeba było więc sprawdzić każdą z możliwości. Kluczem do sukcesu było znalezienie takiej pary antyhel-4-π+, której trajektoria rozpoczynała się w tym samym punkcie. Znaleziono 22 takie pary, a analiza wykazała, że sześć takich wydarzeń to szum tła. Tym samym uczeni ze STAR Collaboration mogli poinformować o wykryciu 16 jąder antyhiperwodoru-4.

Naukowcy porównali czas życia antyhiperwodoru-4 z hiperwodorem-4 oraz antyhipertrytu i hipertrytu. Nie znaleźli żadnych zasadniczych różnic. Ich badania potwierdziły istnienie symetrii, a zatem prawdziwość obecnych modeli fizycznych. Obecnie pracują nad porównaniem masy wspomnianych cząstek i antycząstek.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Tysiące kilometrów pod naszymi stopami, wewnątrz płynnego jądra Ziemi, znajduje się nieznana dotychczas struktura, donoszą naukowcy z Australian National University (ANU). Struktura ma kształt torusa (oponki), znajduje się na niskich szerokościach geograficznych i jest równoległa do równika. Nikt wcześniej jej nie zauważył.
      Jądro Ziemi składa się z dwóch warstw, sztywnej wewnętrznej oraz płynnej zewnętrznej. Nowo odkryta struktura znajduje się w górnych partiach jądra zewnętrznego, gdzie jądro spotyka się z płaszczem ziemskim.
      Współautor badań, geofizyk Hrvoje Tkalčić mówi, że fale sejsmiczne wędrują wolniej w nowo odkrytym regionie, niż w reszcie jądra zewnętrznego. Region ten znajduje się na płaszczyźnie równikowej, na niskich szerokościach geograficznych i ma kształt donuta. Nie znamy jego dokładnej grubości, ale uważamy, że rozciąga się on na kilkaset kilometrów poniżej granicy jądra i płaszcza, wyjaśnia uczony.
      Uczeni z ANU podczas badań wykorzystali inną technikę niż tradycyjne obserwacje fal sejsmicznych w ciągu godziny po trzęsieniu. Badacze przeanalizowali podobieństwa pomiędzy kształtami fal, które docierały do nich przez wiele godzin od wstrząsów. Zrozumienie geometrii rozprzestrzeniania się fal oraz sposobu, w jaki przemieszczają się przez jądro zewnętrzne, pozwoliło nam zrekonstruować czasy przejścia przez planetę i wykazać, że ten nowo odkryty region sejsmiczny cechuje wolniejsze przemieszczanie się fal, stwierdza Tkalčić.
      Jądro zewnętrzne zbudowane jest głównie z żelaza i niklu. To w nim, dzięki ruchowi materiału, powstaje chroniące Ziemię pole magnetyczne, które umożliwiło powstanie złożonego życia. Naukowcy sądzą, że szczegółowe poznanie budowy zewnętrznego jądra, w tym jego składu chemicznego, jest kluczowe dla zrozumienia pola magnetycznego i przewidywania tego, kiedy może potencjalnie osłabnąć.
      Nasze odkrycie jest istotne, gdyż wolniejsze rozprzestrzenianie się fal sejsmicznych w tym regionie wskazuje, że znajduje się tam dużo lekkich pierwiastków. Te lżejsze pierwiastki, wraz z różnicami temperatur, pomagają w intensywnym mieszaniu się materii tworzącej jądro zewnętrzne. Pole magnetyczne to podstawowy element potrzebny do podtrzymania istnienia życia na powierzchni planety, zwraca uwagę profesor Tkalčić.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po raz pierwszy udało się bezpośrednio zaobserwować wpływ grawitacji na antymaterię. Fizycy z CERN eksperymentalnie wykazali, że grawitacja działa na antymaterię tak, jak i na materię – antyatomy opadają na źródło grawitacji. Nie jest to niczym niespodziewanym, różnica w oddziaływaniu grawitacji na materię i antymaterię miałaby bardzo poważne implikacje dla fizyki. Jednak bezpośrednia obserwacja tego zjawiska jest czymś, czego fizycy oczekiwali od dziesięcioleci. Oddziaływanie grawitacyjne jest bowiem niezwykle słabe, zatem łatwo może zostać zakłócone.
      Naukowcy z CERN pracujący przy eksperymencie ALPHA wykorzystali atomy antywodoru, które są stabilne i elektrycznie obojętne, do badania wpływu grawitacji na antymaterię. Uczeni utworzyli antywodór łącząc antyprotony – uzyskane w urządzeniach AD i ELENA pracujących w Antimatter Factory – z pozytonami (antyelektronami) z radioaktywnego sodu-22. Atomy antywodoru umieszczono następnie w pułapce magnetycznej, która chroniła je przed wejściem w kontakt z materią i anihilacją. Całość umieszczono w niedawno skonstruowanym, specjalnym urządzeniu o nazwie ALPHA-g, które pozwala na śledzenie losu atomów po wyłączeniu pułapki.
      Symulacje komputerowe wykazywały, że – w przypadku materii – około 20% atomów powinno opuścić pułapkę przez górną jej część, a około 80% – przez dolną. Naukowcy wielokrotnie przeprowadzili eksperymenty z użyciem antymaterii, uwzględniając przy tym różne ustawienia pułapki i różne możliwe oddziaływania poza oddziaływaniami grawitacyjnymi. Po uśrednieniu wyników eksperymentów okazało się, że antymateria zachowuje się tak, jak materia. Około 20% atomów antywodoru uleciało z pułapki górą, a około 80% – dołem.
      Potrzebowaliśmy 30 lat by nauczyć się, jak stworzyć antyatomy, jak utrzymać je w pułapce, jak je kontrolować i jak je uwalniać z pułapki, by oddziaływała na nie grawitacja. Następnym etapem naszych badań będą jak najbardziej precyzyjne pomiary przyspieszenia opadających antyatomów. Chcemy sprawdzić, czy rzeczywiście atomy i antyatomy opadają w taki sam sposób, mówi Jeffrey Hangst, rzecznik prasowy eksperymentu ALPHA.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Analiza danych z misji InSight wykazała, że jądro Marsa jest całkowicie płynne. Ma więc inną budowę niż jądro Ziemi, gdzie stałe jądro wewnętrzne otoczone jest przez płynne jądro zewnętrzne. Dotychczas nikt nie był w stanie stwierdzić, jaki jest stan skupienia jądra Czerwonej Planety. Udało się to dopiero uczonym z USA, Belgii, Niemiec i Francji, którzy podczas swoich badań wykorzystali dane z InSight.
      Zrozumienie struktury wewnętrznej oraz atmosfery Marsa jest niezbędne do opisania historii tworzenia się i ewolucji planety. Wysłana w 2018 roku InSight zebrała unikatowe dane na temat jej budowy zewnętrznej. Misja zakończyła się w grudniu ubiegłego roku, ale naukowcy z całego świata wciąż analizują przysłane przez nią dane.
      Na ich podstawie badacze stwierdzili, że pod płaszczem, które w całości jest ciałem stałym, znajduje się jądro o średnicy 1835 ± 55 km i średniej gęstości 5955–6290 kg/m3. Nasze analizy danych z InSight stanowią argument przeciwko istnieniu stałego jądra wewnętrznego i pokazują kształt jądra wskazując, że głęboko w płaszczu istnieją wewnętrzne anomalie masy. Znaleźliśmy też dowody na powolny wzrost tempa ruchu obrotowego Marsa, który może być powodowany długoterminowym trendem w wewnętrznej dynamice Marsa lub wpływem jego atmosfery i pokryw lodowych, czytamy w artykule opublikowanym na łamach Nature.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Lekkie antyatomy mogą przebyć w Drodze Mlecznej duże odległości zanim zostaną zaabsorbowane, poinformowali na łamach Nature Physics naukowcy, którzy pracują przy eksperymencie ALICE w CERN-ie. Dodali oni do modelu dane na temat antyatomów helu wytworzonych w Wielkim Zderzaczu Hadronów. Pomoże to w poszukiwaniu cząstek antymaterii, które mogą brać swój początek z ciemnej materii.
      Fizycy potrafią uzyskać w akceleratorach cząstek lekkie antyatomy, jak antyhel czy antydeuter. Dotychczas jednak nie zaobserwowano ich w przestrzeni kosmicznej. Tymczasem z modeli teoretycznych wynika, że antyatomy, podobnie zresztą jak antyprotony, mogą powstawać zarówno w wyniku zderzeń promieniowania komicznego z materią międzygwiezdną, jak i podczas wzajemnej anihilacji cząstek antymaterii. Sygnałów takich poszukuje m.in. zbudowany przez CERN instrument AMS (Alpha Magnetic Spectrometer) zainstalowany na Międzynarodowej Kosmicznej.
      Jeśli jednak instrumenty naukowe zarejestrują lekkie antyatomy pochodzące z przestrzeni kosmicznej, skąd będziemy wiedzieli, że ich źródłem jest ciemna materia? Żeby to określić, naukowcy muszą obliczyć liczbę, a konkretne strumień pola, antyatomów, które powinny dotrzeć do instrumentu badawczego. Wartość ta zależy od źródła antymaterii, prędkości tworzenia antyatomów oraz ich anihilacji lub absorpcji pomiędzy źródłem powstania a instrumentem je rejestrującym. I właśnie ten ostatni element stał się przedmiotem badań naukowców skupionych wokół eksperymentu ALICE.
      Uczeni badali jak jądra antyhelu-3, który uzyskano w Wielkim Zderzaczu Hadronów, zachowują sią w kontakcie z materią. Uzyskane w ten sposób dane wprowadzili do publicznie dostępnego oprogramowania GALPROP, które symuluje rozkład cząstek kosmicznych, w tym antyjąder, w przestrzeni kosmicznej. Pod uwagę wzięli dwa scenariusze. W pierwszym z nich założyli, że źródłem antyhelu-3 są zderzenia promieniowania kosmicznego a materią międzygwiezdną, w drugim zaś, że są nim hipotetyczne cząstki ciemnej materii, WIMP (słabo oddziałujące masywne cząstki). W każdym z tych scenariuszy obliczali przezroczystość Drogi Mlecznej dla jądra antyhelu-3. Innymi słowy, sprawdzali, z jakim prawdopodobieństwem takie antyjądra mogą przelecieć przez Drogę Mleczną zanim zostaną zaabsorbowane.
      Dla modelu, w którym antyjądra pochodziły z WIMP przezroczystość naszej galaktyki wyniosła około 50%. Dla modelu interakcji promieniowania kosmicznego z materią międzygwiezdną wynosiła zaś od 25 do 90 procent, w zależności od energii antyjąder. To pokazuje, że w obu przypadkach antyjądra mogą przebyć olbrzymie odległości, liczone w kiloparsekach (1 kpc ≈ 3261 lat świetlnych), zanim zostaną zaabsorbowane.
      Jako pierwsi wykazaliśmy, że nawet jądra antyhelu-3 pochodzące z centrum galaktyki mogą dotrzeć w pobliże Ziemi. To oznacza, że ich poszukiwanie w przestrzeni kosmicznej jest bardzo dobrą metodą poszukiwania ciemnej materii, stwierdzają autorzy badań.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Komety to jedna z najstarszych obiektów w Układzie Słonecznym. Te lodowe pozostałości po formowaniu się planet zostały wyrzucone przez grawitację na obrzeża Układu Słonecznego. Ich rezerwuarem jest Obłok Oorta, hipotetyczny obłok materiału znajdującego się w odległości od kilku tysięcy do 100 000 jednostek astronomicznych od Słońca.
      Tym, co najbardziej przyciąga naszą uwagę w kometach jest ich spektakularny warkocz ciągnący się na wiele milionów kilometrów. Jego źródłem jest jądro komety, składające się z lodu, pyłu i okruchów skalnych. Jądra większości znanych komet liczą kilka lub kilkanaście kilometrów średnicy. Teleskop Hubble'a odkrył właśnie prawdziwego giganta wśród jąder komet – olbrzyma o średnicy około 140 kilometrów.
      Cometa C/2014 UN271 (Bernardinelli-Bernstein) została odkryta przez Pedro Bernardinellego i Gary'ego Bernsteina w archiwalnych zdjęciach z Dark Energy Survey w Cerro Tololo Inter-American Observatory w Chile. Po raz pierwszy zaobserwowano ją w 2010 roku. A w bieżącym roku naukowcy wykorzystali Teleskop Hubble'a oraz radioteleskopy, by odróżnić jej stałe jądro od otaczającej je chmury pyłu. Okazało się, że mają do czynienia z największym znanym jądrem komety. Obecnie C/2014 UN271znajduje się w odległości mniejszej niż 3,2 miliarda kilometrów od Słońca, a za klika milionów lat ponownie trafi do Obłoku Oorta.
      Aby uświadomić sobie, z jakim gigantem mamy do czynienia, musimy wiedzieć, że średnica jądra C/2014 UN271 jest około 50-krotnie większa niż średnica typowej komety. Słynna kometa Halleya ma jądro o średnicy 11 kilometrów, zaś jądro komety Hale-Boppa ma 74 km średnicy. Dotychczasową rekordzistką była kometa C/2002 z jądrem o średnicy 96 kilometrów. Teraz zaś mówimy o 140-kilometrowym jądrze.
      Profesor David Jewitt Uniwersytetu Kalifornijskiego w Los Angeles, współautor badań nad C/2014 UN271 mówi, że ta kometa to wierzchołek góry lodowej olbrzymiego zbioru tysięcy komet znajdujących się w odległych obszarach Układu Słonecznego, które odbijają zbyt mało światła, byśmy mogli je dostrzec. Zawsze podejrzewaliśmy, że ta kometa ma wielkie jądro, gdyż widzimy ją tak jasną z tak dużej odległości. Teraz mamy potwierdzenie.
      "To niezwykły obiekt, biorąc pod uwagę fakt, jak bardzo jest aktywny w tak dużej odległości od Słońca. Domyślaliśmy się, że jądro może być całkiem duże, ale musieliśmy to potwierdzić, dodaje główny autor artykułu naukowego, Man-To Hui z Uniwersytetu Nauki i Technologii w Taipa w Macau. Naukowcy wykorzystali więc pięć zdjęć wykonanych w styczniu bieżącego roku przez Hubble'a.
      Głównym problemem było odróżnienie jądra od otaczającego go gazu i pyłu. Kometa jest obecnie zbyt daleko od Ziemi, by można było ten problem rozwiązać wizualnie. Jednak w danych z Hubble'a widać pojaśnienia w miejscu, gdzie znajduje się jądro. Hui i jego zespół stworzyli komputerowy model warkocza komety, który pasował do obrazów z Hubble'a. Następnie poświatę z warkocza odjęto od całości, pozostawiając samo tylko światło odbijane przez jądro.
      Uzyskane w ten sposób wyniki porównano z wcześniejszymi pomiarami dokonanymi za pomocą radioteleskopu ALMA (Atacama Large Millimeter/submilimeter Array). Wszystkie te dane łącznie pozwoliły na określenie średnicy jądra i jego współczynnika odbicia. Okazało się, że dane z Hubble'a odnośnie wielkości jądra komety są zgodne z wcześniejszymi danymi z ALMA, jednak jądro jest ciemniejsze niż sądzono. Jest wielkie i ciemniejsze od węgla, mówi Jewitt.
      Kometa C/2014 UN271 od ponad miliona lat podąża w kierunku Słońca. Pochodzi prawdopodobnie z Obłoku Oorta, ale – podobnie jak inne komety – nie narodziła się w nim, ale została tam wypchnięta przez oddziaływania grawitacyjne olbrzymich planet w czasach, gdy orbity Jowisza i Saturna wciąż ewoluowały.
      Kometa Bernardinelli-Bernstein znajduje się na eliptycznej orbicie, a jej podróż wokół Słońca trwa około 3 milionów lat.  Obecnie znajduje się w odległości około 3 godzin świetlnych od Słońca, a w najdalszym punkcie orbity od naszej gwiazdy dzieli ją około pół roku świetlnego.
      Obłok Oorta to hipotetyczna struktura, której istnienie jako pierwszy postulował holenderski astronom Jan Oort. Masa Obłoku może sięgać nawet 20-krotności masy Ziemi. Jednak samego obłoku nie możemy zaobserwować, gdyż tworzący go materiał, w tym olbrzymia liczba komet, jest zbyt słabo widoczny, byśmy mogli go bezpośrednio obserwować. Jeśli Obłok istnieje, to jest największą strukturą w Układzie Słonecznym i jest – przynajmniej przy obecnym stanie techniki – całkowicie dla nas niewidzialny.
      Wiemy jednak, że komety przybywają do wewnętrznych obszarów Układu Słonecznego z każdej strony, a to sugeruje, że Obłok Oorta ma kształt sfery. Jeśli on rzeczywiście istnieje, to sondy Voyager mogą do niego dotrzeć za około 300 lat, a kolejnych 30 000 lat zajmie im przelot przez Obłok.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...