Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Niedotlenienie w walce z zawałem
dodany przez
KopalniaWiedzy.pl, w Medycyna
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Lek sprzed 150 lat może powodować, że guzy nowotworowe stają się bardziej podatne na radioterapię, uważają badacze z Ohio State University. Odkryli oni, że papaweryna zaburza oddychanie komórkowe i powoduje, że guzy stają się bardziej podatne na radioterapię. Jednocześnie zaś papaweryna nie szkodzi dobrze natlenionym zdrowym tkankom. Co więcej, okazało się, że odpowiednie zmodyfikowanie molekuły papaweryny jeszcze bardziej zwiększa jej bezpieczeństwo.
W komentarzu do artykułu, który ukazał się w PNAS, komentujący naukowiec stwierdził, że to potencjalnie znaczące odkrycie, dzięki któremu może uda się wyeliminować hypoksję jako przyczynę niepowodzenia radioterapii.
Wiemy, że hipoksja ogranicza efektywność radioterapii. To poważny problem kliniczny, gdyż ponad połowa chorych na nowotwory jest poddawana w jakimś momencie radioterapii, mówi główny autor badań, profesor Nicholas Denko. Odkryliśmy, że pojedyncza dawka papaweryny podana przed radioterapią, zmniejsza oddychanie w mitochondriach, łagodzi hipoksję i uwrażliwia guzy na radioterapię, dodaje uczony.
Radioterapia zabija komórki nowotworowe na dwa sposoby. Bezpośrednio, uszkadzając DNA, i pośrednio, prowadząc do pojawienia się reaktywnych form tlenu. Hipoksja zmniejsza uszkodzenia DNA i efektywność radioterapii. Jeśli mamy do czynienia z hipoksją, część komórek guza przeżyje radioterapię i stanie się źródłem jego ponownego pojawienia się. Jest niezmiernie ważne, byśmy poradzili sobie z tą formą oporności na leczenie, mówi Denko.
Komórki nowotworowe potrzebują dużych ilości tlen. Ich zapotrzebowanie może być tak duże, że nie wystarcza im krew dostarczana przez naczynia krwionośne, tym bardziej, że są one słabo uformowane. Komórki nowotworowe położone w hipoksycznych, dalekich od naczyń krwionośnych, obszarach guza, mogą przeżyć radioterapię.
Dotychczasowe strategie uwrażliwienia guzów polegały na dostarczaniu im większej ilości tlenu. Taka strategia nie kończy się zwykle sukcesem, gdyż guzy mają słabo uformowane naczynia krwionośne. My zrobiliśmy coś przeciwnego. Zamiast zwiększać dostawy tlenu, zmniejszyliśmy zapotrzebowanie na tlen, stwierdza Denko.
« powrót do artykułu -
przez KopalniaWiedzy.pl
HIF-1 - czynnik indukowany przez hipoksję - był dotąd znany jako jedno z najważniejszych białek odpowiedzialnych za odpowiedź komórki na brak tlenu. Najnowsze badania zespołu z Politechniki Federalnej w Zurychu pokazują, że HIF-1 hamuje także spalanie tłuszczu, co sprzyja otyłości.
Szwajcarzy wykazali, że HIF-1 jest aktywny w adipocytach białej tkanki tłuszczowej. To sprawia, że tłuszcz nie znika nawet po zmianie diety. Wysokie stężenia czynnika indukowanego przez hipoksję występują u pacjentów z masywną otyłością. Na szczęście proces jest odwracalny.
HIF-1 zawsze pojawia się, gdy tkanka znacznie powiększa się w krótkim czasie i staje się przez to niedotleniona. Odnosi się to zarówno do tkanki nowotworowej, jak i tłuszczu brzusznego. Mechanizm HIF-1 występuje u wszystkich kręgowców i we wszystkich typach komórek. Indukując wytwarzanie wielu cytokin, m.in. VEGF (czynnika wzrostu śródbłonka naczyniowego), pozwala komórce przetrwać w warunkach hipoksji. Ponieważ mitochondria uzyskują energię w czasie utleniania, komórki przestawiają się na glikolizę.
Zespół Wilhelma Kreka wykazał, że podjednostka α białka HIF-1 jest krytyczna dla podtrzymania otyłości i związanych z nią patologii, w tym nietolerancji glukozy, insulinooporności i kardiomiopatii. HIF-1α wykonuje swe zadanie, hamując beta-oksydację kwasów tłuszczowych w macierzy mitochondriów (w procesie tym powstają równoważniki redukcyjne służące do uzyskania w łańcuchu oddechowym magazynującego energię ATP). Udaje się to m.in. dzięki transkrypcyjnej represji enzymu sirtuiny-2, która przekłada się na obniżoną ekspresję genów beta-oksydacji i mitochondriów.
Szwajcarzy prowadzili badania na myszach, którym podawano wyłącznie wysokotłuszczową karmę. Gdy zwierzęta w krótkim czasie znacznie przytyły, w ich tkance tłuszczowej wykryto duże stężenia HIF-1. Oznacza to, że wskutek kiepskiego krążenia jej komórkom zaczęło doskwierać niedotlenienie. Gdy HIF-1 "wyłączono", myszy przestały tyć, nawet gdy ich dieta nadal obfitowała w tłuszcze. Kiedy zwierzęta przestawiano na zwykłą karmę, zaczęły chudnąć. Znikał nawet tłuszcz zgromadzony wokół serca. W dodatku nie był on przenoszony na inne narządy.
W próbkach tkanki tłuszczowej pobranych od otyłych i szczupłych ludzi zaobserwowano ten sam wzorzec. U badanych z nieprawidłową wagą ciała stężenie HIF-1 było wysokie, a SIRT-2 niskie. U osób z prawidłową wagą wykrywano jedynie śladowe ilości HIF-1 (prawdopodobnie dlatego, że warunkach prawidłowego poziomu tlenu - normoksji - produkowany przez komórkę HIF-1α powinien być degradowany przez układ proteosomów).
Ponieważ HIF-1 nie eliminuje enzymu SIRT-2 całkowicie, jego chemiczna aktywacja u pacjentów z nadwagą/otyłością mogłaby wymusić spalanie kwasów tłuszczowych.
-
przez KopalniaWiedzy.pl
W niskich stężeniach siarkowodór zapobiega uszkodzeniom mięśnia sercowego. Ponieważ jest niestabilny (bardzo reaktywny), dotąd trudno go było wykorzystywać w celach terapeutycznych. Naukowcy ze Szkoły Medycznej Emory University zauważyli jednak, że składnik olejku czosnkowego - trisiarczek diallilowy - jest donorem stabilnego H2S.
Siarkowodór wykazuje szereg cech kardioochronnych: jest przeciwzapalny, hamuje oddychanie mitochondrialne i apoptozę, działa też przeciwutleniająco. Nic więc dziwnego, że zastanawiano się nad jego podawaniem w czasie operacji kardiologicznych, po zawale czy pacjentom z niewydolnością serca.
Na początku Amerykanie prowadzili eksperymenty na myszach z zespołem poperfuzyjnym (to zespół objawów, które występują po przywrócenia krążenia; powstaje stres oksydacyjny i reakcja zapalna), obecnie skupiają się na doustnych lekach uwalniających H2S. To wyeliminowałoby potrzebę wykonywania zastrzyków [...] - wyjaśnia dr David Lefer.
W ramach studium na 45 min blokowano tętnice wieńcowe gryzoni, odtwarzając w ten sposób zawał. Tuż przed przywróceniem krążenia zwierzętom podawano trisiarczek diallilowy. Okazało się, że w porównaniu do grupy kontrolnej, proporcja zniszczonej tkanki zmniejszyła się o 61% (uzyskano niższy wskaźnik rozległości zawału; naukowcy sądzą, że stało się tak dzięki zahamowaniu oddychania mitochondrialnego).
Zaburzenie dopływu tlenu i krwi uszkadza mitochondria, a utrata integralności mitochondriów prowadzi do śmierci komórki. Zauważyliśmy, że trisiarczek diallilowy może czasowo wyłączyć mitochondria, chroniąc je i zmniejszając produkcję reaktywnych form tlenu - podsumowuje dr Benjamin Predmore.
-
przez KopalniaWiedzy.pl
Naukowcy z Uniwersytetu Waszyngtońskiego w St. Louis wykazali, że wykorzystując białko Nmnat1, można zapobiec uszkodzeniom mózgu występującym u dzieci z porażeniem mózgowym (Proceedings of the National Academy of Sciences).
Amerykanie zademonstrowali, że u nowo narodzonych myszy wysokie stężenia Nmnat1 znacznie zmniejszają uszkodzenia mózgu, do których dochodzi przy ograniczeniu przepływu krwi i niedotlenieniu. Członkowie zespołu mają nadzieję, że ich odkrycia przydadzą się nie tylko przy leczeniu porażenia mózgowego, ale i pacjentów po udarach czy z parkinsonizmem i alzheimeryzmem.
W normalnych warunkach mózg może sobie poradzić z czasowym zaburzeniem dopływu krwi lub niedotlenieniem, ale gdy występują one łącznie przez dostatecznie długi czas, może dojść do długoterminowej niepełnosprawności, a nawet śmierci. Jeśli zastosujemy lek, który uruchomi ten sam ochronny szlak co Nmnat1, będzie się dało zapobiec uszkodzeniu mózgu w różnych chorobach, także neurodegeneracyjnych - tłumaczy dr David M. Holtzman.
Akademicy nie wiedzą, na czym polega zabezpieczający wpływ Nmnat1, ale podejrzewają, że białko blokuje działanie neuroprzekaźnika kwasu glutaminowego. Uważają tak, bo uszkodzone lub pozbawione tlenu neurony wydzielają kwas glutaminowy, który może nadmiernie stymulować i zabijać sąsiednie komórki.
Po raz pierwszy ochronny wpływ Nmnat1 zaobserwował przed 5 laty dr Jeff Milbrandt, który wykazał, że białko może zapobiegać uszkodzeniom nerwów obwodowych w kończynach. Dr Phillip Verghese z laboratorium Holtzmana postanowił potem sprawdzić, czy podobny efekt wystąpi także w mózgu.
Ekipa z St. Louis porównywała skutki ograniczenia przepływu krwi i niedotlenienia u zwykłych myszy i gryzoni zmodyfikowanych genetycznie w taki sposób, by w ich organizmie powstawało więcej białka Nmnat1. Po 6 godzinach u zwierząt z nadmiarem Nmnat1 występowało znaczne ograniczenie uszkodzenia mózgu.
Kiedy tydzień później naukowcy oceniali zakres atrofii mózgu, zauważyli, że u myszy z ponadprzeciętnym poziomem Nmnat1 występowało mniej uszkodzeń w kluczowych rejonach, takich jak hipokamp czy kora (ulegają one zniszczeniu w porażaniu mózgowym).
Późniejsze badania za pomocą rezonansu magnetycznego zademonstrowały, że Nmnat1 może chronić jeszcze lepiej niż początkowo sądzono. Na skanach gryzoni z podwyższonym stężeniem Nmnat1 widać było bowiem niewiele albo nie widać było żadnych uszkodzeń mózgu. Holtzman wyjaśnia, że Nmnat1 zapobiega nekrozie - czyli gwałtownej śmierci komórek.
Z podobnym mechanizmem mamy do czynienia podczas udaru niedokrwiennego. Umierające neurony zalewają swoje otoczenie kwasem glutaminowym, który uszkadza kolejne komórki. Zespół z St. Louis odtworzył te warunki w probówce. Po dodaniu Nmnat1 ginęło mniej neuronów. Jak widać, możliwości wykorzystania tego białka w terapii i prewencji są naprawdę duże.
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.