Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Astronomowie zidentyfikowali czarne dziury najbliższe Ziemi

Rekomendowane odpowiedzi

Najbliższe Ziemi czarne dziury znajdują się w gromadzie Hiady, informuje międzynarodowy zespół naukowy na łamach Monthly Notices of the Royal Astronomical Society. Hiady (Dżdżownice) to najbliższa Układowi Słonecznemu gromada otwarta. Najnowsze badania pokazują, że znajduje się tam co najmniej kilka czarnych dziur. Gromady otwarte to luźno powiązane grawitacją grupy setek do tysięcy zwykle młodych gwiazd. W Hiadach gwiazd jest około 300, a większości z nich nie widać gołym okiem.

Dzięki obserwacjom prowadzonym przez należące do ESA obserwatorium kosmiczne Gaia znamy dokładne prędkości i pozycje gwiazd w Hiadach. Naukowcy z Włoch, Hiszpanii, Chin, Niemiec i Holandii przeprowadzili symulacje ruchu wszystkich gwiazd w Hiadach i porównali je z danymi z Gai. "Nasze symulacje odpowiadają rzeczywistej masie i rozmiarom Hiad tylko wówczas, gdy w centrum gromady znajdują się – lub znajdowały się niedawno – czarne dziury", mówi Stefano Torniamenti z Uniwersytetu w Padwie.

Obserwowane właściwości Hiad najlepiej odpowiadają symulacjom, gdy przyjmiemy, że w gromadzie znajdują się 2-3 gwiazdowe czarne dziury. Symulacje, w których dziury zostały wyrzucone z gromady nie dawniej niż 150 milionów lat temu (Hiady mają ok. 600 milionów lat), także – choć nie tak dobrze – odpowiadają danym obserwacyjnym.

Czarne dziury znajdujące się w Hiadach lub w pobliżu są zatem najbliższymi nam obiektami tego typu. Ich odległość od Układu Słonecznego wynosi około 45 parseków, czyli ok. 150 lat świetlnych. Dotychczas najbliższa nam znaną czarną dziurą była Gaia BH1 o odległości 480 parseków (1560 l.ś.) od Słońca.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Gdy w w połowie grudnia 1972 roku astronauci misji Apollo zbierali na Księżycu próbki, nie mieli pojęcia, że ponad 50 lat później jedna z nich – oznaczona numerem 76535 – zmieni nasze rozumienie historii Srebrnego Globu. Materiał powstał niemal 50 kilometrów pod powierzchnią Księżyca, jednak nie nosi śladów gwałtownego oddziaływania sił, które powstają, gdy skały z dużej głębokości są wyrzucane na powierzchnię. Zagadka 76535 intrygowała naukowców od dekad. Zdaniem niektórych specjalistów, materiał ten znalazł się na powierzchni w wyniku potężnego uderzenia, które utworzyło największy księżycowy krater, Basen Biegun Południowy-Aitken.
      Zespół Evana Bjonnesa z Lawrence Livermore National Laboratory przeprowadził zaawansowane analizy komputerowe wielkiego uderzenia w Księżyc i stwierdził, że uderzenie, które utworzyło Morze Jasności mogło wynieść na powierzchnię skały na późniejszych etapach jego formowania się. Badania sugerują, że do tego uderzenia doszło 4,25 miliarda lat temu. To o 300 milionów lat wcześniej, niż dotychczas sądzono. To zaś oznacza, że okres intensywnych bombardowań Księżyca należy przesunąć w czasie. A co za tym idzie, należy zmienić pogląd na okres, w którym dochodziło do bombardowań Ziemi i innych planet. To niewielka skała, ale przynosi wielką zmianę w rozumieniu wczesnej historii Księżyca. Jest jak kapsuła czasu sprzed 4,25 miliardów lat, mówi Bjonnes.
      Skład chemiczny i budowa fizyczna próbki 76535 wskazują, że materiał powstał głęboko pod powierzchnią. Jednak brak śladów oddziaływania potężnych sił, jakie zwykle towarzyszą gwałtownemu wydobywaniu się na powierzchnię. Dotychczasowe hipotezy mówiły, że tylko tak potężne uderzenia, jak to w wyniku którego powstał Basen Biegun Południowy-Aitken mogły wydobyć skały z tak dużych głębokości. Jednak miejsce znalezienia próbki było tak odległe od Basenu, że jej przyniesienie tam wymagałoby gwałtownego oddziaływania potężnych sił, a na próbce żadnych takich śladów nie było widać.
      Jednak z badań Bjonnesa i jego zespołu wynika, że podczas późniejszego etapu formowania się krateru uderzeniowego, materiał z głębokości dziesiątków kilometrów może zostać wyniesiony na powierzchnię na tyle łagodnie, by zachować skały w takiej formie, jak próbka 76535. Symulacje wykazały, że uderzenie, które utworzyło Morze Jasności, mogło wynieść materiał z głębokości kilkudziesięciu kilometrów na głębokość nie większą niż kilku kilometrów od powierzchni. To dokładnie taki proces, w wyniku którego próbka mogła trafić na powierzchnię i nie nosić śladów oddziaływania gwałtownych sił.
      Jeśli zaś rzeczywiście Morze Jasności powstało 4,25 miliardów lat temu, to również inne duże księżycowe kratery mogą być starsze niż obecnie uznawane. A to oznacza, że naukowcy muszą przemyśleć, jak szybko Księżyc ostygł i jak często w Układzie Słonecznym dochodziło do wielkich bombardowań wewnętrznych planet. Badania Księżyca są ważne z punktu widzenia naszej wiedzy o historii Ziemi. Na planecie wiele śladów zostało zatartych w wyniku procesów geologicznych i ruchów tektonicznych. Dlatego oś czasu Ziemi kalibruje się z uwzględnieniem danych z Księżyca. Zmiana datowania historii Srebrnego Globu wpływa więc na datowanie historii Ziemi.
      Wyniki fascynujących badań zostały opublikowane na łamach Geophysical Research Letters.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Gdy w w połowie grudnia 1972 roku astronauci misji Apollo zbierali na Księżycu próbki, nie mieli pojęcia, że ponad 50 lat później jedna z nich – oznaczona numerem 76535 – zmieni nasze rozumienie historii Srebrnego Globu. Materiał powstał niemal 50 kilometrów pod powierzchnią Księżyca, jednak nie nosi śladów gwałtownego oddziaływania sił, które powstają, gdy skały z dużej głębokości są wyrzucane na powierzchnię. Zagadka 76535 intrygowała naukowców od dekad. Zdaniem niektórych specjalistów, materiał ten znalazł się na powierzchni w wyniku potężnego uderzenia, które utworzyło największy księżycowy krater, Basen Biegun Południowy-Aitken.
      Zespół Evana Bjonnesa z Lawrence Livermore National Laboratory przeprowadził zaawansowane analizy komputerowe wielkiego uderzenia w Księżyc i stwierdził, że uderzenie, które utworzyło Morze Jasności mogło wynieść na powierzchnię skały na późniejszych etapach jego formowania się. Badania sugerują, że do tego uderzenia doszło 4,25 miliarda lat temu. To o 300 milionów lat wcześniej, niż dotychczas sądzono. To zaś oznacza, że okres intensywnych bombardowań Księżyca należy przesunąć w czasie. A co za tym idzie, należy zmienić pogląd na okres, w którym dochodziło do bombardowań Ziemi i innych planet. To niewielka skała, ale przynosi wielką zmianę w rozumieniu wczesnej historii Księżyca. Jest jak kapsuła czasu sprzed 4,25 miliardów lat, mówi Bjonnes.
      Skład chemiczny i budowa fizyczna próbki 76535 wskazują, że materiał powstał głęboko pod powierzchnią. Jednak brak śladów oddziaływania potężnych sił, jakie zwykle towarzyszą gwałtownemu wydobywaniu się na powierzchnię. Dotychczasowe hipotezy mówiły, że tylko tak potężne uderzenia, jak to w wyniku którego powstał Basen Biegun Południowy-Aitken mogły wydobyć skały z tak dużych głębokości. Jednak miejsce znalezienia próbki było tak odległe od Basenu, że jej przyniesienie tam wymagałoby gwałtownego oddziaływania potężnych sił, a na próbce żadnych takich śladów nie było widać.
      Jednak z badań Bjonnesa i jego zespołu wynika, że podczas późniejszego etapu formowania się krateru uderzeniowego, materiał z głębokości dziesiątków kilometrów może zostać wyniesiony na powierzchnię na tyle łagodnie, by zachować skały w takiej formie, jak próbka 76535. Symulacje wykazały, że uderzenie, które utworzyło Morze Jasności, mogło wynieść materiał z głębokości kilkudziesięciu kilometrów na głębokość nie większą niż kilku kilometrów od powierzchni. To dokładnie taki proces, w wyniku którego próbka mogła trafić na powierzchnię i nie nosić śladów oddziaływania gwałtownych sił.
      Jeśli zaś rzeczywiście Morze Jasności powstało 4,25 miliardów lat temu, to również inne duże księżycowe kratery mogą być starsze niż obecnie uznawane. A to oznacza, że naukowcy muszą przemyśleć, jak szybko Księżyc ostygł i jak często w Układzie Słonecznym dochodziło do wielkich bombardowań wewnętrznych planet. Badania Księżyca są ważne z punktu widzenia naszej wiedzy o historii Ziemi. Na planecie wiele śladów zostało zatartych w wyniku procesów geologicznych i ruchów tektonicznych. Dlatego oś czasu Ziemi kalibruje się z uwzględnieniem danych z Księżyca. Zmiana datowania historii Srebrnego Globu wpływa więc na datowanie historii Ziemi.
      Wyniki fascynujących badań zostały opublikowane na łamach Geophysical Research Letters.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przed 10 laty 14 września 2015 roku interferometr LIGO zarejestrował pierwsze fale grawitacyjne wykryte przez człowieka (o ich odkryciu poinformowano 11 lutego 2016 roku). Ludzkość zyskała 3. sposób badania kosmosu, po falach elektromagnetycznych i promieniowaniu kosmicznym. Tym razem zaobserwowaliśmy zaginanie czasoprzestrzeni. Obecnie LIGO rutynowo wykrywa fale grawitacyjne. We współpracy z Virgo (Włochy) i KAGRA (Japonia) tworzy sieć LVK, która średnio co trzy dni rejestruje fale pochodzące z połączenia czarnych dziur. Teraz naukowcy z LVK zdobyli drugi w historii, i jednocześnie najdokładniejszy, dowód obserwacyjny, na prawdziwość teorii o powierzchni czarnych dziur Stephena Hawkinga. W przełomowych badaniach brała udział duża grupa polskich uczonych z Centrum Astronomicznego im. Mikołaja Kopernika, Uniwersytetu Warszawskiego, Uniwersytetu Jagiellońskiego, Polskiej Akademii Nauk, Uniwersytetu w Białymstoku i Narodowego Centrum Badań Jądrowych.
      W 1971 roku Stephen Hawking zaprezentował teorię, zgodnie z którą całkowita powierzchnia horyzontu zdarzeń czarnej dziury nigdy się nie zmniejsza. Pierwsze zarejestrowane przez człowieka fale grawitacyjne pochodziły z wydarzenia GW150914, które po analizie okazało się połączeniem czarnych dziur o masach 29 i 36 mas Słońca. W ich wyniku powstała nowa czarna dziura o masie 62 mas Słońca, a brakujące masa 3 Słońc została wyemitowana w postaci promieniowania grawitacyjnego. Gdy Stephen Hawking się o tym dowiedział, skontaktował się z naukowcami z LIGO i zapytał, czy wykryte zjawisko potwierdza jego teorię o powierzchni. Wówczas jednak naukowcy nie byli w stanie odpowiedzieć na to pytanie. Dopiero w 2019 roku, już po śmierci Hawkinga, stworzono odpowiednie techniki analizy danych. Dwa lata później, w 2021 roku ostatecznie stwierdzono, że obserwacje wykazały, iż powierzchnia wynikowej czarnej dziury się nie zmniejszyła. Dokładność obserwacji wynosiła 95%, czyli około 2 sigma. To zbyt mało, by mówić o odkryciu.
      Obecnie nadeszło silniejsze potwierdzenie prawdziwości teorii Hawkinga. Znaleziono je w danych z interferometru LIGO – Virgo i KAGRA były akurat wyłączone – który 14 stycznia bieżącego roku zaobserwował sygnał GW250114. Dostarczył on najsilniejszych dowodów na prawdziwość twierdzenia Hawkinga. ANaliza wykazała, że całkowita powierzchnia obu czarnych dziur, które się połączyły, wynosiła 240 000 km2, a powierzchnia nowo powstałej czarnej dziury to około 400 000 km2. Tym razem dokładność obserwacji wynosi 99,999%. Szczegóły badań opublikowano na łamach Physical Review Letters.
      Ten wyjątkowy pomiar był możliwy dzięki 10 latom udoskonaleń interferometru. Prace były prowadzone w obu wykrywaczach, w stanach Waszyngton i Louisiana. Nie wiem, co będzie za 10 lat, ale poprzednie 10 lat to czas olbrzymiego wzrostu czułości LIGO. Dzięki temu nie tylko wykrywamy coraz więcej nowych czarnych dziur, ale zdobywamy coraz bardziej szczegółowe dane na ich temat, mówi profesor Katerina Chatziioannou.
      Fale grawitacyjne ściskają i rozciągają przestrzeń o 1 część na 1021, zatem cała ziemia jest ściskana lub rozciągana o około szerokość atomu. LIGO składa się z dwóch bliźniaczych urządzeń umieszczonych w odległości około 3000 kilometrów od siebie. Każde z urządzeń ma kształt litery L o ramionach długości 4 kilometrów. Na końcach ramion znajdują się 40-kilogramowe lustra umieszczone dokładnie w tej samej odległości od lasera. W ich stronę wystrzeliwana jest wiązka lasera, która odbija się od luster i wraca do detektorów. Jeśli w trakcie ostrzeliwania luster laserem przez Ziemię przejdzie fala grawitacyjna, zmieni się odległość pomiędzy jednym z luster a laserem. Zatem światło w obu ramionach przebędzie różną drogę. Między promieniami światła dojdzie do interferencji, a badając ją naukowcy mogą mierzyć relatywną długość obu ramion z dokładnością do 1/10 000 szerokości protonu. To wystarczy, by wykryć zmiany długości ramion interferometru spowodowane przejściem fali grawitacyjnej.
      Wykorzystanie dwóch identycznych urządzeń położonych w dużej odległości od siebie ma na celu eliminację części zakłóceń powodowanych źródłami na Ziemi (może zostać zakłócone jedno urządzenie, ale drugie położone tak daleko nie odczuje zakłócenia lub będzie to odczuwalne w inny sposób). Duża odległość pozwala też na dodatkowe upewnienie się, że przeszła fala grawitacyjna. Fale te rozchodzą się bowiem z prędkością światła, dokładnie więc wiemy, jakie może być opóźnienie zarejestrowanego sygnału pomiędzy jednym a drugim urządzeniem. Dzięki odległości dzielącej urządzenia możemy też dokonywać lepszej triangulacji, czyli lepiej określać źródło sygnału, a włączenie do tej sieci Virgo i KAGRA dodatkowo zwiększa precyzję pomiarów.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W Układzie Słonecznym zauważono kometę o miliardy lat starszą od samego Układu. Na grafice poniżej możecie zobaczyć orbitę Słońca (żółte linie) wokół centrum Drogi Mlecznej oraz orbitę komety 3I/ATLAS (linie czerwone). Na dwóch grafikach przedstawiających widok z boku wyraźnie widać, że kometa odlatuje daleko od płaszczyzny naszej galaktyki.
      Odkryta niedawno międzygwiezdna kometa 3I/ATLAS, jest prawdopodobnie najstarszą znaną nam kometą. Astronom Matthew Hopkins z University of Oxford poinformował podczas tegorocznego spotkania Królewskiego Towarzystwa Astronomicznego, że może mieć ona ponad 7 miliardów lat, jest zatem o 3 miliardy lat starsza od Układu Słonecznego.
      3I/ATLAS jest zaledwie 3. znanym nam obiektem z przestrzeni międzygwiezdnej. W przeciwieństwie do dwóch poprzednich międzygwiezdnych gości gości – 1I/Oumuamua oraz 2I/Borisov – porusza się ona po bardzo stromej trajektorii przez Drogę Mleczną. Trajektorii, która wskazuje, że kometa powstała poza płaszczyzną galaktyki. W płaszczyźnie znajduje się Słońce i większość gwiazd. A nad i pod płaszczyzną krążą bardzo stare gwiazdy.
      Wszystkie komety z Układu Słonecznego, takie jak kometa Halleya, powstały wraz z nim, więc liczą sobie około 4,5 miliarda lat. Obiekty spoza Układu mogą być znacznie starsze. Dotychczas Układ Słoneczny odwiedziły trzy takie obiekty i wszystko wskazuje na to, że 3I/ATLAS jest najstarszym z nich.
      Badacze przypuszczają, że kometa bogata jest w lód. Wstępne obserwacje wskazują, że jest większa niż jej międzygwiezdni poprzednicy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Koala to jedne z najbardziej rozpoznawalnych i lubianych zwierząt na Ziemi. Te niewielkie ssaki są jednak zagrożone w wyniku utraty i fragmentacji siedlisk oraz trapiących je chorób. Wiemy, że niemal całe życie spędzają na drzewach, schodzą z nich tylko, by przemieścić się na inne drzewo. I pomimo tego, że na gatunek ten zwraca się dużo uwagi, nauka niewiele wie o tych nielicznych chwilach, które zwierzęta spędzają na ziemi. Tymczasem z najnowszych badań wynika, że właśnie to zabija koale.
      Już poprzednie badania zgonów koali pokazały, że do 66% zgonów wśród nich dochodzi w momencie, gdy są na ziemi. Są tam głównie zabijane przez psy oraz samochody. Nie wiemy, jak często koala schodzą z drzew, jak daleko i jak szybko się przemieszczają, jak długo pozostają na ziemi, dlaczego schodzą z drzew. To niezwykle ważne informacje, których potrzebujemy, jeśli chcemy zidentyfikować najbardziej zagrożone obszary lub pory dnia i opracować strategie zmniejszenia zagrożeń czyhających na te zwierzęta, mówi doktorantka Gabriella Sparkes z University of Queensland.
      Uczona wraz z zespołem wyposażyła dzikie koale w nadajniki GPS oraz akcelerometry. Urządzenia założono zwierzętom żyjącym na obszarach, na których wiele drzew wycięto na potrzeby rolnictwa. Pozycję koali rejestrowano co 5 minut, a gdy znalazły się na ziemi, była ona odnotowywana co 5 sekund. Dzięki temu możliwe było precyzyjne określenie zachowań zwierząt.
      Tym, co zaszokowało naukowców, był fakt, jak wiele czasu zwierzęta spędzają na drzewach. Okazało się, że schodzą one z nich zaledwie 2-3 razy w ciągu nocy, a łączny czas przebywania na gruncie wynosi zaledwie około 10 minut. Z badań wynika też, że przebywające na ziemi zwierzę porusza się naprawdę powoli. Niemal tyle samo czasu spędzały na siedzeniu i staniu, co na przemieszczaniu się, a szybciej poruszają się jedynie przez 7% czasu spędzanego na gruncie. To może oznaczać, że zwierzęta bardzo szczegółowo oceniają otocznie, być może starannie wybierają drzewa, na które chcą wejść, a być może szybszy ruch wiąże się z olbrzymim wydatkiem energetycznym.
      Dokonane odkrycie przynosi niezwykle ważne informacje i pokazuje, jak wielkim zagrożeniem jest wycinka drzew. Skoro w ciągu tych zaledwie 10 minut przebywania na gruncie, ginie aż 2/3 zwierząt, a fragmentacja siedlisk powoduje, że koala zmuszone są przebywać na gruncie coraz więcej czasu, dalsze niszczenie środowiska może przynieść gatunkowi zagładę.
      Teraz autorzy badań oceniają te cechy habitatów koali, które decydują, jak długo zwierzęta pozostają na drzewach. Jeśli zidentyfikujemy gatunki drzew lub warunki środowiskowe powodujące, że zwierzęta dłużej zostają na drzewach, być może będziemy w stanie tak zarządzać krajobrazem, że rzadziej będą musiały schodzić z drzew, mówi Sparkes.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...