Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
ITER – największy reaktor termojądrowy – ruszy później niż planowano
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Naukowcy z amerykańskich Ames National Laboratory i Iowa State University stoją na czele konsorcjum, które pracuje nad nowymi materiałami dla reaktorów fuzyjnych. Stworzenie odpowiednich materiałów to niezbędny krok, które mają umożliwić komercyjne wykorzystywanie energii z fuzji jądrowej. Badania prowadzone są w ramach programu CHADWICK (Creating Hardened And Durable fusion first Wall Incorporating Centralized Knowledge) ogłoszonego niedawno przez Advanced Research Projects Agency–Energy (ARPA-E).
Celem agencji jest promocja i finansowanie zaawansowanych badań nad technologiami pozyskiwania energii. Przed 2 miesiącami ARPA-E ogłosiła warty 30 milionów USD program CHADWICK, do którego zakwalifikowało się 13 projektów.
Jedną z głównych trudności w pozyskiwaniu energii w procesie fuzji jądrowej jest odpowiednie uwięzienie plazmy, w której odbywa się reakcja. Uwięziona plazma jest jak miniaturowe Słońce zamknięte w pojemniku, który musi wytrzymać oddziaływanie niezwykle wysokiej temperatury, silne promieniowanie i pola magnetyczne, a jednocześnie efektywnie przekazywać ciepło, które jest zamieniane w elektryczność.
Projekt CHADWICK skupia się na pierwszej ścianie reaktora, tej, która otacza plazmę uwięzioną za pomocą silnego pola magnetycznego. Pierwsza ściana składa się z dwóch warstw materiału. Ta wewnętrzna jest blisko plazmy, zewnętrzna pomaga przekazać energię do innych części reaktora.
Pierwsza warstwa musi być wytrzymała, odporna na pęknięcia i erozję. Nie może też być przez długi czas radioaktywna, by po wyłączeniu reaktora można było bezpiecznie przeprowadzić prace w jego wnętrzu. Nicolas Arbigay z Ames National Laboratory kieruje pracami nad udoskonaleniem pierwszej warstwy.
Głównym materiałem, jaki badamy, jest wolfram. Nie licząc węgla, a właściwie jego niektórych form – jak diament – ma on najwyższą temperaturę topnienia ze wszystkich pierwiastków, stwierdził uczony.
Jego laboratorium kupiło ostatnio specjalną platformę do wytwarzania i testowania nowych materiałów. Możemy robić proszki i odlewy różnych stopów, w tym czystego wolframu, wyjaśnia Argibay i dodaje, że w ciągu kilku najbliższych miesięcy laboratorium wzbogaci się w nowe urządzenia, które pozwolą na uzyskiwanie materiałów również w ilości wystarczającej do prowadzenia programów pilotażowych.
Ames Lab zainwestowało też w rzadki system pozwalający na badanie materiałów ogniotrwałych w temperaturze znacznie powyżej 1000 stopni Celsjusza i posiada jedyny w USA komercyjny system testowania takich materiałów w temperaturze do 1500 stopni. To niezwykle ważny element prac nad pierwszą ścianą reaktora fuzyjnego.
Materiał pierwszej ściany jest tym, co utrzymuje całość. Musi być wytrzymały. W ścianie muszą być zintegrowane różne elementy, jak kanały chłodzące, pozwalające na pozyskiwanie ciepła, wyjaśnia Jordan Tiarks. Pracuje on nad kolejnym aspektem reaktora fuzyjnego. Tiarks specjalizuje się w stalach ODS (stale dyspersyjnie umacniane tlenkami) przyszłej generacji. Stale ODS są wzbogacone ceramicznymi nanocząstkami, co poprawia ich właściwości mechaniczne i pozwala przetrwać wysokie promieniowanie. To, czego się dotychczas nauczyliśmy, chcemy wykorzystać do stworzenia nowego materiału, stopu bazującego na wanadzie, który będzie dobrze sprawdzał się w reaktorach fuzyjnych, mówi Tiarks.
Problem w tym, że wanad zachowuje się inaczej niż stal. Ma znacznie wyższą temperaturę topnienia i jest bardziej reaktywny. Nie można go łączyć z ceramiką, więc zespół Tiarksa szuka innych sposobów na tworzenie stopów wanadu. Wykorzystujemy gaz pod wysokim ciśnieniem, by rozbić roztopiony materiał na niewielkie kropelki, które gwałtownie schładzamy i uzyskujemy proszek. Tutaj nie możemy użyć żadnej ceramiki, stwierdza uczony. Dodatkowym problemem jest reaktywność wanadu. Już same proszki są bardzo reaktywne. Jeśli tworzymy z nich aerozol, mogą eksplodować. Na szczęście duża część metali tworzy cienką warstwę tlenu na takich cząstkach, która zapobiega kolejnym reakcjom. Ta warstewka chroni resztę cząstki przed dalszym utlenianiem się. Znaczna część prowadzonych przez nas badań polega na opracowaniu metod zapobiegania gwałtownym reakcjom. Jest to konieczne, by bezpiecznie używać proszku. Jednocześnie zaś nie możemy zbytnio ich utlenić, bo to negatywnie wpłynie na ich właściwości. Opracowanie odpowiednich metod przetwarzania sproszkowanych materiałów opartych na wanadzie pozwoli lepiej kontrolować strukturę drugiej warstwy pierwszej ściany reaktora.
Gdy już odpowiedni materiał zostanie uzyskany, jego testowaniem zajmie się zespół profesora Sida Pathaka z Iowa State University. Uczeni nałożą proszek na odpowiednie powierzchnie i będą badali przede wszystkim odporność tak stworzonych paneli na silne promieniowanie reaktora fuzyjnego. Uważają, że nowy materiał będzie bardziej odporny niż dotychczas używane. Jednak, jak zauważa uczony, negatywne skutki promieniowania ujawniają się w materiale ścian reaktora po 10-20 latach. Projekt badawczy będzie trwał 3 lata, więc nie jest możliwe odtworzenie odpowiednich warunków. Dlatego badania będą prowadzone w Ion Beam Laboratory, gdzie materiał będzie bombardowany za pomocą jonów, a nie neutronów, jakby to miało miejsce w reaktorze. Dodatkową zaletą jest fakt, że materiał potraktowany jonami nie będzie radioaktywny, co ułatwi badania. Z kolei negatywną stroną użycia jonów jest bardzo płytka penetracja. Uszkodzenia materiału pojawią się na głębokości 1-2 mikrometrów, więc ich badanie będzie wymagało użycia wyspecjalizowanych narzędzi.
Opracowanie komercyjnej fuzji jądrowej stawia przed nami jedne z największych wyzwań technologicznych naszych czasów, jednocześnie jednak niesie ze sobą obietnicę olbrzymich korzyści, w postaci nieograniczonego źródła czystej energii, podsumowuje Tiarks.
Fuzja jądrowa – czyli reakcja termojądrowa – to obiecujące źródło energii. Polega ona na łączeniu się atomów lżejszych pierwiastków w cięższe i uwalnianiu energii. To proces, który zasila gwiazdy. Taki sposób produkcji energii na bardzo wiele zalet. Nie dochodzi tutaj do uwalniania gazów cieplarnianych. Na Ziemi są olbrzymie zasoby i wody i litu, z których można pozyskać paliwo do fuzji jądrowej, deuter i tryt. Wystarczą one na miliony lat produkcji energii. Takiego luksusu nie mamy ani jeśli chodzi o węgiel czy gaz ziemny, ani o uran do elektrowni atomowych. Tego ostatniego wystarczy jeszcze na od 90 (według World Nuclear Association) do ponad 135 lat (wg. Agencji Energii Atomowej). Fuzja jądrowa jest niezwykle wydajna. Proces łączenia atomów może zapewnić nawet 4 miliony razy więcej energii niż reakcje chemiczne, takie jak spalanie węgla czy gazu i cztery razy więcej energii niż wykorzystywane w elektrowniach atomowych procesy rozpadu atomów.
Co ważne, w wyniku fuzji jądrowej nie powstają długotrwałe wysoko radioaktywne odpady. Te, które powstają są na tyle mało radioaktywne, że można by je ponownie wykorzystać lub poddać recyklingowi po nie więcej niż 100 latach. Nie istnieje też ryzyko proliferacji broni jądrowej, gdyż w procesie fuzji nie używa się materiałów rozszczepialnych, a radioaktywny tryt nie nadaje się do produkcji broni. Nie ma też ryzyka wystąpienia podobnych awarii jak w Czernobylu czy Fukushimie. Jednak fuzja jądrowa to bardzo delikatny proces, który musi przebiegać w ściśle określonych warunkach. Każde ich zakłócenie powoduje, że plazma ulega schłodzeniu w ciągu kilku sekund i reakcja się zatrzymuje.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Zespół z Lawrence Livermore National Laboratory po raz drugi uzyskał w wyniku fuzji jądrowej (reakcji termojądrowej) więcej energii niż zostało wprowadzone do kapsułki paliwowej. Pierwszy raz o takim wydarzeniu usłyszeliśmy w grudniu ubiegłego roku. Teraz energii uzyskano więcej niż wówczas. Szczegóły poznamy podczas zbliżających się konferencji naukowych oraz z opublikowanych artykułów w recenzowanych magazynach. Musimy jednak pamiętać, że mamy tutaj do czynienia z przełomem naukowym, jednak do wykorzystania energii z fuzji jądrowej droga jeszcze daleka.
Obecnie potrafimy uzyskiwać energię w elektrowniach atomowych z rozpadu cięższych atomów na lżejsze. Elektrownie atomowe to ekologiczne i stabilne źródło energii, jednak wytwarzają wysoce radioaktywne odpady, które pozostają radioaktywne przez setki i tysiące lat, ponadto opierają się na ograniczonych zasobach paliwa. Wedle różnych szacunków paliwa do nich wystarczy na od 90 do ponad 130 lat.
Fuzja jądrowa pozbawiona jest tych wad. Polega ona na łączeniu dwóch izotopów wodoru – zwykle deuteru i trytu – w cięższy hel. Powstają przy tym co prawda odpady promieniotwórcze, ale ich promieniotwórczość jest stosunkowo niska i przestają one sprawiać problem w ciągu kilkudziesięciu lat. Ponadto dysponujemy praktycznie nieograniczonymi zasobami wodoru. Dlatego też od dziesiątków lat naukowcy pracują nad opanowaniem fuzji jądrowej i uzyskaniu z niej zysku energetycznego netto. Dotychczas się to nie udało.
W grudniu ubiegłego roku naukowcy z National Ignition Facility poinfomrowali o uzyskaniu z fuzji jądrowej większej ilości energii niż została wprowadzona do kapsułki z paliwem w celu rozpoczęcia reakcji. Było to ważne wydarzenie z naukowego punktu widzenia. Jednak nie z praktycznego. Ilość energii potrzebna do przeprowadzenia eksperymentu była bowiem co najmniej 100-krotnie większa, niż ilość energii uzyskanej. Teraz ten sam zespół uzyskał więcej energii niż w grudniu.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Do końca maja potrwa modernizacja badawczego reaktora jądrowego MARIA. Jako przewidywany termin jego uruchomienia wskazywany jest przełom czerwca i lipca. Dr Marek Pawłowski, rzecznik Narodowego Centrum Badań Jądrowych (NCBJ), wyjaśnia, że napromienianie izotopów ma zostać wznowione od 1. cyklu pracy.
Przerwa remontowa rozpoczęła się 5 września ubiegłego roku. Była ona podyktowana starzeniem się i brakiem części zamiennych. Dr Pawłowski wspomina również o konieczności dostosowania zbiorników na odpady ciekłe do nowych wymagań prawnych. Gdy prace modernizacyjne zostaną ukończone, rozpocznie się seria testów wszystkich układów i urządzeń. Najpierw są one sprawdzane przy niepracującym reaktorze, a następnie gdy reaktor pracuje na minimalnej mocy. Gdy testy wypadną pomyślnie, NCBJ zwróci się do prezesa Państwowej Agencji Atomistyki o zgodę na uruchomienie reaktora. Dopiero po jej uzyskaniu MARIA będzie mogła podjąć pracę na nowo.
Reaktor MARIA działa od grudnia 1974 roku. Jest urządzeniem doświadczalno-produkcyjnym i jednym z najważniejszych źródeł niektórych izotopów promieniotwórczych dla światowej medycyny. Na przykład w ubiegłym roku, dzięki błyskawicznej zmianie harmonogramu pracy MARII, udało się zapobiec światowym niedoborom medycznego molibdenu-99. MARIA, nazwany tak od imienia Marii Skłodowskiej-Curie, wykorzystywany jest też do badań materiałowych i technologicznych, domieszkowania materiałów półprzewodnikowych, neutronowej modyfikacji materiałów oraz badań fizycznych.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Amerykańscy eksperci z National Ignition Facility poinformowali o uzyskaniu z fuzji jądrowej wyraźnie więcej energii niż wprowadzono w paliwo. Uzyskano tym samym punkt tzw. breakeven. Po kilkudziesięciu latach badań pojawiła się realna nadzieja na uzyskanie niemal niewyczerpanego źródła czystej energii.
Fuzja jądrowa – czyli reakcja termojądrowa – to obiecujące źródło energii. Polega ona na łączeniu się atomów lżejszych pierwiastków w cięższe i uwalnianiu energii. To proces, który zasila gwiazdy. Taki sposób produkcji energii na bardzo wiele zalet. Nie dochodzi tutaj do uwalniania gazów cieplarnianych. Na Ziemi są olbrzymie zasoby i wody i litu, z których można pozyskać paliwo do fuzji jądrowej, deuter i tryt. Wystarczą one na miliony lat produkcji energii. Takiego luksusu nie mamy ani jeśli chodzi o węgiel czy gaz ziemny, ani o uran do elektrowni atomowych. Tego ostatniego wystarczy jeszcze na od 90 (według World Nuclear Association) do ponad 135 lat (wg. Agencji Energii Atomowej). Fuzja jądrowa jest niezwykle wydajna. Proces łączenia atomów może zapewnić nawet 4 miliony razy więcej energii niż reakcje chemiczne, takie jak spalanie węgla czy gazu i cztery razy więcej energii niż wykorzystywane w elektrowniach atomowych procesy rozpadu atomów.
Co ważne, w wyniku fuzji jądrowej nie powstają długotrwałe wysoko radioaktywne odpady. Te, które powstają są na tyle mało radioaktywne, że można by je ponownie wykorzystać lub poddać recyklingowi po nie więcej niż 100 latach. Nie istnieje też ryzyko proliferacji broni jądrowej, gdyż w procesie fuzji nie używa się materiałów rozszczepialnych, a radioaktywny tryt nie nadaje się do produkcji broni. Nie ma też ryzyka wystąpienia podobnych awarii jak w Czernobylu czy Fukushimie. Jednak fuzja jądrowa to bardzo delikatny proces, który musi przebiegać w ściśle określonych warunkach. Każde ich zakłócenie powoduje, że plazma ulega schłodzeniu w ciągu kilku sekund i reakcja się zatrzymuje.
Fuzja jądrowa jest od wielu dekad przedmiotem zainteresowania naukowców na całym świecie. Problem w tym, że aby pokonać siły elektrostatyczne odpychające od siebie atomy potrzeba albo ekstremalnie wysokich temperatur, albo potężnych impulsów laserowych. To zaś wymaga budowy olbrzymich, bardzo skomplikowanych i kosztownych instalacji.
Istnieją różne pomysły na przeprowadzeni fuzji jądrowej, a najpopularniejszym z nich jest próba wykorzystania tokamaków. Optymalna temperatura, w której dochodzi do reakcji połączenia się deuteru z trytem w tokamaku wynosi od ok. 100 do ok. 200 milionów stopni Celsjusza. Tak rozgrzana materia znajduje się w stanie plazmy. Trzeba ją uwięzić w jakiejś niematerialnej pułapce. Może być nią np. silne pole magnetyczne. I to właśnie rozwiązanie stosowane jest w tokamakach i będzie je wykorzystywał słynny budowany we Francji reaktor badawczy ITER. Uwięzienie jest konieczne zarówno dlatego, by plazma się nie rozpraszała i nie chłodziła, jak i dlatego, by utrzymać ją z dala od ścian reaktora, które zostałyby uszkodzone przez wysokie temperatury.
Innym pomysłem jest zaś inercyjne uwięzienie plazmy. Z tej technologii korzysta właśnie National Ignition Facility (NIF). NIF otwarto w 2009 roku w w Kalifornii. To laboratorium badawcze, w którym zespół 192 laserów skupia wiązki na niewielkiej kapsułce zawierającej paliwo. Jest ono zgniatane prze światło lasera, a zapłon następuje w wyniku transformacji promieniowania laserowego w promieniowanie rentgenowskie. To efekt prac prowadzonych od dziesięcioleci. W latach 60. zespół fizyków z Lawrence Livermore National Laboratory – do którego należy NIF – pracujący pod kierunkiem Johna Nuckollsa, wysunął hipotezę, że zapłon fuzji jądrowej można by uzyskać za pomocą laserów. Właśnie poinformowano, że 5 grudnia bieżącego roku uzyskano długo oczekiwany zapłon.
Zapłon ma miejsce, gdy ciepło z cząstek alfa powstających w wyniku fuzji termojądrowej w centrum kapsułki z paliwem jest w stanie przezwyciężyć efekt chłodzący wywołany m.in. stratami promieniowania rentgenowskiego czy przewodnictwem elektronowym, zapewniając samopodtrzymujący mechanizm ogrzewania i gwałtowny wzrost ilości uzyskanej energii, czytamy na stronach NIF. Podczas eksperymentu do paliwa dostarczono 2,05 megadżula (MJ) energii, a w wyniku reakcji uzyskano 3,15 MJ.
Zapłon uzyskano w niewielkim cylindrze zwanym hohlraum, wewnątrz którego znajdowała się kapsułka z paliwem. Wewnątrz niej energia światła laserowego zmieniła się w promieniowanie rentgenowskie, doszło do kompresji kapsułki, jej implozji i pojawienia się wysokotemperaturowej plazmy, wewnątrz której panowało wysokie ciśnienie.
To ważny krok, jednak zanim do naszych domów popłynie czysta energia uzyskana drogą fuzji jądrowej, musimy nauczyć się uzyskiwać wielokrotnie więcej energii niż kosztowało nas doprowadzenie do reakcji. Do tego zaś potrzeba wielu naukowych i technologicznych przełomów. Ich osiągnięcie może potrwać całe dekady.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W National Ignition Facility dokonano przełomowego kroku na drodze ku uzyskiwaniu energii z fuzji jądrowej. Po raz pierwszy w historii w tego typu systemie udało się uzyskać porównywalną ilość energii jak ta, która została zaabsorbowana przez paliwo podczas inicjowania reakcji. Jednak do uzyskania większej ilości energii niż włożono do całego systemu jeszcze daleka droga. Ostatni eksperyment wykazał też, że naukowcom z Lawrence Livermore National Laboratory udało się zwiększyć wydajność systemu o cały rząd wielkości.
Przełom dokonał się, gdy cząsteczki alfa, jądra helu powstałe w wyniku fuzji deuteru i trytu, oddały swoją energię do paliwa, zamiast, jak zwykle, wydostać się z niego. Ta dodatkowa energia przyspieszyła fuzję, prowadząc do jeszcze większej produkcji cząsteczek alfa. Taki samonapędzający się mechanizm to początek fuzji jądrowej.
Najnowszy eksperyment został bardzo szczegółowo zaprojektowany tak, by nie doszło do pęknięcia plastikowych osłon, w których znajduje się paliwo. Prawdopodobnie to właśnie degradacja osłoń spowodowała, że poprzednie eksperymenty były nieudane. Osiągnięcie celu było możliwe dzięki zmodyfikowaniu impulsu laserowego, za pomocą którego paliwo jest kompresowane.
W National Ignition Facility używa się 192 laserów, które kompresują miniaturowe pigułki z paliwem deuterowo-trytowym do tego stopnia, iż w wyniku fuzji jądrowej dochodzi do uwolnienia dodatkowej energii. Kapsułki mają średnice mniejszą niż połowa średnicy ludzkiego włosa. Wewnątrz znajdują się tryt i deuter, które przez mniej niż miliardową część sekundy zostają poddane olbrzymiemu ciśnieniu i temperaturze.
Obecnie naukowcy starają się wykorzystać dwie różne koncepcje rozpoczęcia fuzji jądrowej. Jedna, z której korzysta National Ignition Facility, zakłada użycie laserów do skompresowania paliwa i utrzymania go na miejscu za pomocą inercyjnego uwięzienia. Z kolei w Europie próbuje się innego podejścia. W Joint European Torus w Wielkiej Brytanii oraz w reaktorze ITER we Francji próbuje się utrzymać plazmę na miejscu za pomocą uwięzienia magnetycznego.
Celem wszystkich tych prac jest rozpoczęcie fuzji jądrowej i uzyskanie z niej energii.
Po dziesiątkach latach badań i niezwykle powolnego rozwoju techniki fuzji jądrowej w końcu udało się uzyskać nadmiarową energię. Przełom dokonany w otwartym w 2009 NIF powinien bardziej przychylnie nastawić doń krytyków tego eksperymentu. Warto przypomnieć, że NIF bił rekordy impulsu i uzyskanej mocy laserowej. Duże koszty związane z utrzymaniem NIF skłoniły jednak Kongres USA do podjęcia decyzji, iż ośrodek ma w większym niż wcześniej stopniu zajmować się badaniami nad bronią jądrową. To jednak, jak widzimy, nie przeszkodziło w osiągnięciu sukcesu na pierwotnym polu zainteresowań NIF.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.