Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Umierająca komórka raka jelita grubego instruuje inne komórki, jak chronić się przed śmiercią
dodany przez
KopalniaWiedzy.pl, w Medycyna
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Inżynierowie biomedyczni z Duke University zaprezentowali najbardziej skuteczną terapię nowotworu trzustki, jaka kiedykolwiek została pokazana na modelu mysim. Zwykle za sukces uznaje się, gdy guzy nowotworowe przestają rosnąć. Tymczasem nowa terapia doprowadziła do... całkowitego zniknięcia guzów nawet u 80% myszy, w tym guzów uznawanych za najtrudniejsze do leczenia.
Uczeni z Duke połączyli tradycyjne chemioterapeutyki z nową metodą naświetlania guza. Zamiast naświetlać go z zewnętrznego źródła, co powoduje, że promieniowanie przechodzi przez zdrową tkankę, uczeni wstrzyknęli bezpośrednio w guz żel z radioaktywnym jodem-131. W ten sposób oszczędzana jest zdrowa tkanka, a żel jest wchłaniany po tym, jak przestaje być promieniotwórczy.
Przeanalizowali wyniki ponad 1100 przedklinicznych badań na modelach i nigdy nie spotkaliśmy się z przypadkiem, by guz się skurczył i znikł, jak w naszych badaniach. Gdy literatura fachowa mówi, że takie rzeczy się nie zdarzają, wiesz, że zauważyłeś coś niezwykle interesującego, mówi doktorant Jeff Schaal.
Nowotwory trzustki stanowią zaledwie około 3% wszystkich nowotworów, jednak są 3. najczęstszą przyczyną zgonów wśród chorych na nowotwory. Są bardzo trudne w leczeniu, zwykle ich przebiegu pojawiają się agresywne mutacje, w wyniku których stają się oporne na wiele leków. Ponadto najczęściej diagnozowane są późno, po pojawieniu się przerzutów.
Obecne leczenie polega na chemioterapii, która uwrażliwia komórki nowotworowe na radioterapię. Jednak do efektywnego leczenia konieczne jest dostarczenie do guza pewnej dawki promieniowania, którą trudno jest zapewnić bez ryzyka poważnych skutków ubocznych. Inną testowaną metodą jest dostarczanie do guza materiału promieniotwórczego zamkniętego w tytanie. Jednak tytan przepuszcza jedynie promienie gamma, które penetrują tkankę daleko poza guz, zatem taki implant może pozostawać w organizmie przez krótki czas, później bowiem szkody przeważają nad korzyściami.
Obecnie nie istnieje dobra metoda leczenia raka trzustki, przyznaje Schaal. Uczony spróbował więc innej metody dostarczania materiału promieniotwórczego, wykorzystując w tym celu polipeptydy elastynopodobne (ELP). To syntetyczne łańcuchy aminokwasów przypominające żel zadanych właściwościach. W temperaturze pokojowej ELP znajdują się w stanie ciekłym, ale w organizmie, który ma wyższą temperaturę, tworzą stabilną podobną do żelu substancję. Po wstrzyknięciu zamykają w sobie materiał radioaktywny. Naukowcy z Duke wykorzystali jod-131, gdyż od dawna jest on wykorzystywany w medycynie, a jego wpływ na organizmy żywe jest dobrze poznany. ELP zapobiega rozlaniu się materiału promieniotwórczego po organizmie.
Jod-131 emituje promieniowanie beta, które przenika przez żel i dociera do tkanki nowotworowej. Z czasem ELP jest wchłaniany przez organizm, ale wchłanianie to trwa dłużej niż zamiana jodu-131 w bezpieczny dla organizmu stabilny ksenon-131. Promieniowanie beta stabilizuje ELP. Dzięki temu żel dłużej pozostaje stabilny i zaczyna się rozpadać dopiero po zniknięciu promieniowania, wyjaśnia Schaal.
Podczas swoich eksperymentów naukowcy wykorzystali wstrzykiwaną radioterapię w połączeniu z paklitakselem. To chemioterapeutyk szeroko stosowany w leczeniu mysich modeli raka trzustki. Badania prowadzono na różnych modelach mysich z różnymi mutacjami, które występują w raku trzustki. Niektóre myszy miały guzy bezpośrednio pod skórę, inne miały je w trzustce. Wszystkie rodzaje modeli nowotworu zareagowały na leczenie. W 80% przypadków doszło do całkowitej eliminacji guza u 75% modeli. Jednocześnie nie zauważono żadnych efektów ubocznych terapii oprócz tych wywoływanych przez chemioterapię.
Sądzimy, że ciągłe promieniowanie, jakiemu poddawany jest guz, pozwala chemioterapeutykowi znacznie skuteczniej zwalczać komórki nowotworowe niż tradycyjna radioterapia z zewnętrznego źródła. To zaś wskazuje, że ta metoda może być również skuteczna w przypadku innych rodzajów nowotworów, mówi Schaal.
Badacze przypominają przy tym, że to dopiero wstępne badania przedkliniczne, więc nie należy się spodziewać, iż wkrótce w ten sposób będą leczeni ludzie. Najpierw konieczne jest przeprowadzenie szeroko zakrojonych testów na zwierzętach i wykazanie, że technikę taką można precyzyjnie stosować za pomocą obecnie dostępnych narzędzi. Jeśli takie testy wypadną pomyślnie, można będzie złożyć wniosek o zgodę na rozpoczęcie I fazy badań klinicznych na ludziach.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Zanim cierpiący na nowotwór pacjent zostanie poddany terapii z użyciem limfocytów T, cały jego układ odpornościowy musi zostać zniszczony za pomocą radio- lub chemioterapii. Toksyczne skutki takiego działania to m.in. nudności, olbrzymie zmęczenie i utrata włosów. Teraz grupa naukowców wykazała, że syntetyczne receptory IL-9 pozwalają na stosowanie terapii limfocytami T bez konieczności użycia chemii czy radioterapii. Zmodyfikowane limfocyty T z syntetycznym receptorem IL-9 skutecznie zwalczały nowotwór u myszy, czytamy na łamach Nature.
Gdy limfocyty T przekazują sygnały za pośrednictwem syntetycznego receptora IL9, zyskują nowe funkcje, które nie tylko pozwalają im poradzić sobie z istniejącym układem odpornościowym pacjenta, ale również bardziej efektywnie zabijają komórki nowotworowe, mówi doktor Anusha Kalbasi z Uniwersytetu Kalifornijskiego w Los Angeles (UCLA), który kierował grupą badawczą. Mam właśnie pacjenta, który zmaga się ze skutkami ubocznymi chemioterapii po to, by zniszczyć jego układ odpornościowy, żeby można było zastosować leczenie limfocytami T. dzięki tej technologii mógłby mieć szansę na terapię bez konieczności wcześniejszego niszczenia układu odpornościowego.
To odkrycie może spowodować, że będziemy w stanie stosować terapię limfocytami T równie łatwo, jak stosuje się transfuzję krwi, dodaje mentor Kalbasiego, doktor Antoni Ribas.
W 2018 roku Ribas i Christopher Garcia z Uniwersytetu Stanforda opublikowali pracę naukową, w której analizowali możliwość użycia syntetycznej wersji interleukiny-2 (IL-2) do stymulowania limfocytów T wyposażonych w syntetyczny receptor IL-2. Dzięki takiemu systemowi można by manipulować limfocytami T nawet po podaniu ich pacjentowi. Manipulacji można by dokonać podając mu syntetyczną IL-2, która nie ma wpływu na inne komórki ciała. Kalbasi i jego koledzy, zaintrygowani tymi spostrzeżeniami, postanowili przetestować podobny system, wykorzystując przy tym syntetyczne receptory, które przekazywałyby sygnały z innych cytokin, jak IL-4, IL-7, IL-9 oraz IL-21.
Bardzo szybko stało się jasne, że warto skupić się na cytokinie IL-9, mówi Kalbasi. W przeciwieństwie do pozostałych wymienionych cytokin, sygnały z IL-9 nie są typowo aktywne w limfocytach T. Tymczasem syntetyczny sygnał IL-9 nadał limfocytom T unikatowe cechy komórek macierzystych oraz komórek-zabójców, dzięki czemu lepiej radziły sobie z guzami. W jednym z naszych zwierzęcych modeli nowotworów za pomocą limfocytów T z syntetycznym receptorem IL-9 wyleczyliśmy ponad połowę myszy, chwali się Kalbasi.
Naukowcy wykazali, że terapia taka działa w przypadku co najmniej dwóch trudnych w leczeniu nowotworów – czerniaka i raka trzustki. Terapia była skuteczna niezależnie od tego, czy cytokiny podawaliśmy ogólnie do organizmu, czy bezpośrednio do guza. We wszystkich przypadkach limfocyty T z syntetycznym receptorem IL-9 działały lepiej i pozwalały na pozbycie się guzów, których w inny sposób nie moglibyśmy usunąć, dodaje Kalbasi.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Komórki nowotworów złośliwych łatwiej niż prawidłowe ulegają mechanicznym deformacjom, co umożliwia im migrację w organizmie. W Instytucie Fizyki Jądrowej Polskiej Akademii Nauk w Krakowie zbadano własności mechaniczne komórek raka prostaty poddanych działaniu najczęściej stosowanych leków antynowotworowych. Zdaniem badaczy, obecne leki można stosować efektywniej i w mniejszych dawkach.
W przypadku raka kluczowym czynnikiem sprzyjającym powstawaniu przerzutów jest zdolność komórek nowotworowych do ulegania deformacjom mechanicznym. W Instytucie Fizyki Jądrowej Polskiej Akademii Nauk (IFJ PAN) w Krakowie badania nad własnościami mechanicznymi komórek są prowadzone od ćwierć wieku. Najnowsze prace, zrealizowane w kooperacji z Katedrą Biochemii Lekarskiej Collegium Medicum Uniwersytetu Jagiellońskiego (CM UJ), dotyczyły kilku leków obecnie używanych w chemioterapii raka prostaty, a konkretnie ich wpływu na własności mechaniczne komórek nowotworowych. Wyniki napawają optymizmem: wszystko wskazuje na to, że dawki niektórych leków będzie można zmniejszyć bez ryzyka obniżenia skuteczności ich działania.
Chemioterapia to wyjątkowo brutalny atak nie tylko na komórki nowotworowe pacjenta, ale na wszystkie komórki jego organizmu. Stosując ją lekarze mają nadzieję, że bardziej wrażliwe komórki nowotworu zginą zanim zaczną ginąć komórki zdrowe. W tej sytuacji kluczowego znaczenia nabiera wiedza, jak dobrać lek optymalny w danym przypadku oraz jak ustalić jego minimalną dawkę, która z jednej strony zagwarantuje skuteczność działania, z drugiej zaś pozwoli zminimalizować negatywne skutki terapii.
Fizycy z IFJ PAN już w 1999 roku wykazali, że komórki nowotworowe łatwiej się deformują mechanicznie. W praktyce fakt ten oznacza, że z większą efektywnością mogą się przeciskać przez wąskie naczynia układów krwionośnego i/lub limfatycznego.
O mechanicznych własnościach komórki decydują takie elementy jej cytoszkieletu jak badane przez nas mikrotubule zbudowane z białka tubuliny, filamenty aktynowe z aktyny oraz filamenty pośrednie tworzone z białek typu keratyna czy wimentyna, mówi prof. dr hab. Małgorzata Lekka z Zakładu Badań Mikroukładów Biofizycznych IFJ PAN i uzupełnia: Pomiary biomechaniczne komórek prowadzimy za pomocą mikroskopu sił atomowych. W zależności od potrzeb, możemy sondą słabiej lub mocniej naciskać na komórkę i w ten sposób otrzymujemy odpowiedź mechaniczną pochodzącą od struktur leżących albo przy jej powierzchni, czyli przy błonie komórkowej, albo głębiej, nawet przy jądrze komórkowym. Jednak aby otrzymać informację o skutkach działania leku, musimy ocenić, jaki wkład do własności mechanicznych komórki wnoszą poszczególne rodzaje włókien cytoszkieletu.
W obecnie raportowanych wynikach krakowscy fizycy przedstawili eksperymenty z użyciem komercyjnie dostępnej linii ludzkich komórek raka prostaty DU145. Linię tę wybrano z uwagi na jej odporność na działanie leków. Wystawione na długotrwały wpływ leków, komórki te po pewnym czasie uodparniają się na działanie leków i nie tylko nie umierają, ale nawet zaczynają się dzielić.
Skoncentrowaliśmy się na efektach działania trzech często stosowanych leków: winfluniny, kolchicyny i docetakselu. Wszystkie oddziałują na mikrotubule, co jest pożądane z uwagi na fakt, że to właśnie te włókna są istotne przy podziale komórki. Docetaksel stabilizuje mikrotubule, zatem zwiększa też sztywność komórek nowotworu i utrudnia im migrację w organizmie. Pozostałe dwa leki destabilizują mikrotubule, komórki nowotworowe mogą więc migrować, jednak z uwagi na zaburzone funkcje cytoszkieletu nie są w stanie się dzielić, mówi doktorant Andrzej Kubiak, pierwszy autor artykułu opublikowanego na łamach prestiżowego czasopisma naukowego Nanoscale.
Krakowscy naukowcy analizowali żywotność i własności mechaniczne komórek po 24, 48 i 72 godzinach od poddania ich działaniu leków, przy czym okazało się, że największe zmiany są obserwowane trzy dni od ekspozycji na lek. Badania pozwoliły ustalić dwa stężenia leków: wyższe, które niszczyło komórki, oraz niższe, przy którym komórki co prawda przeżywały, lecz ich własności mechaniczne okazały się być zmienione. Z oczywistych względów szczególnie interesujące było to, co się działo z komórkami w ostatnim z wymienionych przypadków. Precyzyjna interpretacja części wyników wymagała zastosowania szeregu narzędzi, takich jak mikroskop konfokalny czy cytometria przepływowa. Ich użycie było możliwe dzięki współpracy z Instytutem Farmakologii PAN w Krakowie, Zakładem Biologii Komórki na Wydziale Biochemii, Biofizyki i Biotechnologii UJ oraz Uniwersytetem w Mediolanie (Department of Physics, Università degli Studi di Milano).
Od pewnego czasu wiadomo, że gdy dochodzi do uszkodzeń mikrotubul, część ich funkcji przejmują włókna aktynowe. Połączenie pomiarów własności mechanicznych komórek z obrazami z mikroskopów konfokalnego i fluorescencyjnego pozwoliło nam zaobserwować ten efekt. Byliśmy w stanie dokładnie ustalić obszary w komórce, na które działa dany lek, oraz zrozumieć, jak przebiegają zmiany jego wpływu w czasie, podkreśla doktorant Kubiak.
Z badań krakowskich fizyków płyną praktyczne wnioski. Na przykład wpływ winfluniny jest wyraźnie widoczny w obszarze jądrowym, lecz jest kompensowany przez włókna aktynowe. W rezultacie komórka pozostaje wystarczająco sztywna, by mogła się dalej namnażać. Z kolei po 48 godzinach od podania leku najlepiej widać efekty działania docetakselu, jednak głównie na obrzeżach komórek. Fakt ten także informuje o wzroście roli włókien aktynowych i oznacza, że terapię należałoby wesprzeć jakimś lekiem działającym właśnie na te włókna.
Do tej pory niewiele było badań nad skutecznością małych stężeń leków antynowotworowych. My pokazujemy, że zagadnieniem naprawdę warto się zainteresować. Jeśli bowiem dobrze zrozumiemy mechanizmy działania poszczególnych leków, możemy zachować – a niekiedy wręcz zwiększyć – ich dotychczasową skuteczność przy jednoczesnym zmniejszeniu skutków ubocznych chemioterapii. W ten sposób chemioterapia może stać się bardziej przyjazna pacjentowi, co powinno wpłynąć nie tylko na jego zdrowie fizyczne, ale i na nastawienie psychiczne, tak potrzebne w walce z rakiem, podsumowuje prof. Lekka.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Wszystkie komórki nowotworowe, a nie tylko ich niewielki podzbiór, są zdolne do wprowadzenia się w tryb powolnego podziału w sytuacji, gdy znajdą się w stanie zagrożenia. Później, gdy zagrożenie minie, mogą się „przebudzić” i powrócić do trybu szybkiego podziału. Dzięki zdolności do wspólnego wprowadzania się w stan uśpienia komórki nowotworowe mogą przetrwać poszczególne etapy chemioterapii i zyskać oporność na kolejne jej etapy.
Komórki guza wykorzystują więc diapauzę czyli wywoływany czynnikami zewnętrznymi, ale sterowany wewnętrznie, przejściowy stan zahamowania rozwoju. O tym, że komórki nowotworowe mogą korzystać z diapauzy poinformowali właśnie naukowcy z Princess Margaret Cancer Center oraz University of Toronto. Ich artykuł można przeczytać na łamach Cell.
Wykorzystaliśmy techniki oznaczania komórek oraz modelowania matematycznego na pobranych od pacjenta komórkach raka jelita grubego. Chcieliśmy w ten sposób zidentyfikować i scharakteryzować stany, w których znajdują się komórki w reakcji na chemioterapię (DTP, drug-tolerant persister). W guzach, które weszły w stan DTP nie stwierdziliśmy spadku złożoności klonalnej, a po zaprzestaniu leczenia guzy te podjęły swoje zwykłe działanie, napisali autorzy badań. Dodali, że uzyskane przez nich dane pasują do matematycznego modelu przewidującego, że wszystkie komórki nowotworowe, a nie tylko niektóre małe subpopulacje, są zdolne do wejścia w DTP.
W ramach prowadzonych badań zespół pod kierunkiem Catherine O'Brien i Miguela Ramalho-Santosa traktował chemioterapeutykami ludzkie komórki raka jelita grubego. Okazało się, że wszystkie komórki weszły w stan powolnego rozwoju, w którym przestały się dzielić i wymagały niewiele składników odżywczych. Dopóki na szalce Petriego znajdowały się chemioterapeutyki, dopóty komórki nowotworowe pozostawały w stanie, który naukowcy nazwali „stanem DTP podobnym do diapauzy”.
Zwykle diapauza, którą wykorzystuje ponad 100 gatunków ssaków, służy ochronie rozwijającego się płodu w warunkach znacznej zmienności środowiskowej. Gdy panują np. zbyt wysokie lub zbyt niskie temperatury czy brakuje żywności, rozwój embrionu zostaje w dużej mierze wstrzymany, w oczekiwaniu na poprawienie się warunków. Kanadyjscy naukowcy informują teraz, że komórki nowotworowe znajdujące się w stanie DTP wykazują niezwykłe podobieństwa transkrypcyjne i funkcjonalne do stanu diapauzy.
Okazuje się, że komórki nowotworowe potrafią wykorzystać ten ewolucyjny mechanizm przetrwania, mimo że dotychczas wydawało się, iż ludzie utracili go w wyniku ewolucji, mówi O'Brien. Uczona, która jest chirurgiem specjalizującym się w nowotworach układu pokarmowego, wpadła na pomysł swoich badań przed trzema laty, gdy przypomniała sobie wykład na temat komórkowych mechanizmów umożliwiających przetrwanie embrionu myszy w niekorzystnych warunkach. Gdy go słuchałam, wpadła mi do głowy myśl, żeby zbadać, czy komórki nowotworowe mogą wykorzystywać taki mechanizm do przetrwania chemioterapii, mówi.
Uczona skontaktowała się z Miguelem Ramalho-Santosem, autorem wspomnianego wykładu, i porównała profile ekspresji genów w powoli rozwijających się komórkach nowotworu znajdujących się w stanie DTP w wyniku chemioterapii z ekspresją genów mysich embrionów w stanie diapauzy. Okazało się, że profile te są do siebie uderzająco podobne.
Podobnie jak w przypadku embrionów, komórki nowotworowe w DTP potrzebowały aktywowania procesu autofagii. W jego wyniku komórka może „pożreć” własne proteiny i inne elementy by przetrwać, gdy brakuje innych źródeł energii.
O'Brien przetestowała niewielką molekułę blokującą autofagię i wówczas komórki nowotworowe nie przeżyły. Zostały zabite przez chemioterapeutyki. To daje nam unikatową szansę. Powinniśmy zaatakować komórki nowotworowe gdy znajdują się w tym spowolnionym okresie, zanim nabędą genetycznej oporności na leki. To nowy sposób myślenia o oporności na chemioterapię i o jej pokonaniu, dodaje uczona.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Komórki nowotworowe mają olbrzymią zdolność do zyskiwania odporności na chemioterapię. Na przykład wrażliwe na terapie blokujące hormony komórki raka prostaty mogą zmienić się w takie, które do wzrostu nie potrzebują hormonu. To jeden z powodów, dla których tak trudno jest leczyć nowotwory. Naukowcom udało się właśnie dotrzeć do źródła tej wysokiej plastyczności komórek nowotworowych.
Taki wysoko plastyczny stan komórek to źródło heterogeniczności guzów, mówi główny autor badań Tuomas Tammela ze Sloan Kettering Institute (SKI). To rodzaj zatłoczonego skrzyżowania z wieloma drogami. Gdy komórka chce zmienić swoją identyfikację, przechodzi w ten właśnie stan.
Jak czytamy w pracy Emergence of a High-Plasticity Cell State during Lung Cancer Evolution, ewolucja guza z pojedynczej komórki do złośliwej heterogenicznej tkanki wciąż jest słabo rozumiana. W niniejszej pracy opisujemy transkryptomy pojedynczych komórek nowotworu płuc genetycznie zmodyfikowanej myszy w siedmiu stadiach rozwoju choroby, od przednowotworowej hiperplazji po gruczolakoraka.
Te wysoce plastyczny stan komórki to coś zupełnie nowego. Gdy go odkryliśmy, nie wiedzieliśmy, z czym mamy do czynienia. Tak bardzo różnił się on od wszystkiego, co widzieliśmy. Ani nie wygląda to jak normalne komórki płuc, z których powstaje nowotwór, ani nie wygląda to jak komórki nowotworowe. Ten obserwowany przez nas stan ma zmieszane cechy komórek macierzystych listków zarodkowych, komórek macierzystych tkanki chrzęstnej, a nawet komórek nerek, wyjaśnia doktor Jason Chan.
Bliższe badania wykazały, że stan wysokiej plastyczności pojawia się przez cały czas ewolucji i wzrostu guza. Komórki macierzyste są niezwykle ważne podczas rozwoju zarodkowego i dla naprawy tkanek. Wielu specjalistów uważa, że nowotwory biorą się ze szczególnego rodzaju nowotworowych komórek macierzystych. Jednak Tammela i jego zespół nie sądzą, by wspomniane wysoko plastyczne komórki były komórkami macierzystymi. Nie są one bowiem obecne na samym początku wzrostu guza. Pojawiają się później. Gdy porównaliśmy wzorce ekspresji genów tych wysoce plastycznych komórek z normalnymi komórkami macierzystymi oraz znanymi nowotworowymi komórkami macierzystymi, to nic sie nie zgadzało. Wszystko wyglądało całkowicie inaczej, stwierdza Tammela.
Zespół Tammeli, w skład którego wchodzili też naukowcy z Koch Institute for Integrative Cancer Research na MIT oraz Klarman Cell Observatory z Broad Institute, uważa, że to ten wysoce plastyczny stan komórkowy (HPCS) jest powiązany z niską przeżywalnością nowotworów u ludzi i wykazuje odporność na chemioterapię u myszy. Nasz model może wyjaśnić, dlaczego niektóre komórki nowotworowe są odporne na chemioterapię i nie posiadają możliwej do zidentyfikowania bazy genetycznej odpowiedzialnej za tę odporność, mówi Chan.
Naukowcy nie wykluczają, że możliwe będzie zwalczanie nowotworów łącząc obecne leki do chemioterapii ze środkami biorącymi na cel wysoce plastyczne komórki.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.