Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Cykl węglanowo-krzemianowy chroni życie na Ziemi przed katastrofalną zmianą klimatu

Rekomendowane odpowiedzi

Klimat Ziemi przechodził zmienne koleje losu, od bardzo gorącego po epoki lodowe. Mimo to życie na naszej planecie przetrwało 3,7 miliarda lat. Badacze z MIT potwierdzili właśnie, że Ziemia posiada działający na przestrzeni setek tysięcy lat mechanizm regulacji, dzięki któremu nie dochodzi do katastrofalnych zmian klimatu, które mogłyby zakończyć historię życia.

Naukowcy od dawna podejrzewali, że cykl węglanowo-krzemianowy odgrywa ważną rolę w ziemskim obiegu węgla. Polega on na wiązaniu atmosferycznego CO2 przez skały. Teraz udało się zdobyć bezpośrednie dowody, że działa on w skali geologicznej jak stabilizator klimatu.

Nowe dowody opierają się na badaniach danych paleoklimatycznych i zmianach średnich temperatur na Ziemi na przestrzeni ostatnich 66 milionów lat. Naukowcy z MIT przeprowadzili analizy matematyczne, by sprawdzić, czy pojawi się jakiś wzorzec, który wskazywałby na istnienie mechanizmu stabilizującego globalne temperatury w skali geologicznej. I taki wzorzec znaleźli. Pojawia się on na przestrzeni setek tysięcy lat, co jest zgodne ze skalą, w jakiej powinien działać mechanizm stabilizujący wywoływany przez wietrzenie krzemianów.

Z jednej strony to dobra wiadomość, bo dzięki temu wiemy, że obecne globalne ocieplenie zostanie zniwelowane za pomocą tego mechanizmu. Jednak z drugiej strony, potrwa to setki tysięcy lat, a to zbyt wolno, by rozwiązać nasze obecne problemy, mówi Constantin Arnscheidt z MIT. Jest on, wraz z profesorem Danielem Rothmanem, współautorem badań.

Naukowcy już wcześniej widzieli pewne oznaki działania mechanizmu stabilizującego. Analizy chemiczne starych skał wskazywały bowiem, że przepływ węgla ze skorupy ziemskiej i do niej jest dość zrównoważony, nawet gdy dochodzi do znacznych zmian temperatur na Ziemi. Modele obliczeniowe wskazywały, że proces wietrzenia krzemianów może w pewnym stopniu stabilizować klimat. Ponadto sam fakt, że życie na Ziemi przetrwało miliardy lat sugerował istnienie jakiegoś wbudowanego, geologicznego, mechanizmu zapobiegającego ekstremalnym zmianom temperatury.

Mamy planetę, której klimat poddany był wielu dramatycznym zmianom. Dlaczego życie je przetrwało? Jedno z wyjaśnień brzmi, że musi istnieć jakiś mechanizm stabilizujący temperatury w zakresie zdanym dla życia. Jednak dotychczas nikt nie przedstawił dowodów, że taki mechanizm bez przerwy kontroluje klimat naszej planety, wyjaśnia Arnscheidt.

Rothman i Arnscheidtprzjrzeli się danym dotyczącym zmian temperatury na Ziemi. Informacje na ten temat pochodziły zarówno z analiz składu chemicznego muszli sprzed milionów lat, jak i z badań rdzeni lodowych. Nasze badania były możliwe tylko dzięki temu, że nauka dokonała olbrzymiego postępu w dziedzinie zwiększenia rozdzielczości danych temperaturowych. Dysponujemy więc zapisem z ostatnich 66 milionów lat, w którym poszczególne punkty pomiaru temperatury są oddalone od siebie najwyżej o kilka tysięcy lat, wyjaśniają uczeni.

Naukowcy wykorzystali stochastyczne równania różniczkowe, które są do poszukiwania wzorców w zestawach wysoce zmiennych danych. Okazało się, że w ten sposób można przewidzieć co się będzie działo z klimatem, jeśli istnieje mechanizm go stabilizujący. To trochę podobne do pędzącego samochodu. Gdy naciśniemy hamulec, upłynie trochę czasu, zanim samochód się zatrzyma. To właśnie nasza skala, w której klimat – w wyniku działania tego mechanizmu – powraca do stanu stabilnego – wyjaśniają uczeni. Gdyby taki mechanizm nie istniał, zmiany temperatury powinny zwiększać się z czasem. Jednak tak się nie dzieje. W pewnym momencie mechanizm stabilizujący jest silniejszy i nie dochodzi do ekstremalnych zmian, zagrażających istnieniu życia na Ziemi. Skala tych zmian – wynosząca setki tysięcy lat – jest zgodna z przewidywaniami dotyczącymi skali działania cyklu węglowo-krzemianowego.

Co ciekawe, naukowcy nie znaleźli żadnego mechanizmu, który stabilizowałby klimat w skali dłuższej niż milion lat. Zdaniem autorów badań, mieliśmy szczęście, że zmiany w tej skali nie były dotychczas ekstremalnie duże. Są dwie szkoły. Jedni mówią, że to przypadek, zdaniem innych – istnieje mechanizm stabilizujący. Na podstawie danych wykazaliśmy, że prawda prawdopodobnie leży po środku. Innymi słowy, istnieje mechanizm stabilizujący, ale i zwykłe szczęście odegrało rolę pomogło życiu na Ziemi przetrwać miliardy lat, wyjaśnia Arnscheidt.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Ziemia doświadczyła co najmniej 5 epizodów masowego wymierania. Przyczyny niektórych z nich, jak wymierania kredowego, kiedy wyginęły dinozaury, są znane. Co do innych wymierań, nie mamy takiej pewności. Od pewnego czasu pojawiają się głosy, że za przynajmniej jedno z wymierań odpowiedzialny był wybuch supernowej. Autorzy nowych badań uważają, że bliskie Ziemi supernowe już co najmniej dwukrotnie doprowadziły do wymierania gatunków. I nie mamy gwarancji, że sytuacja się nie powtórzy.
      Podczas eksplozji supernowej dochodzi do emisji olbrzymich ilości promieniowania ultrafioletowego, X czy gamma. Z badań przeprowadzonych w 2020 roku wiemy, że wybuch supernowej w odległości mniejszej niż 10 parseków (ok. 33 lata świetlne) od Ziemi, całkowicie zabiłby życie na naszej planecie. Za wymierania mogą więc odpowiadać wybuchy, do których doszło w odległości około 20 parseków (pc). Zginęłoby wówczas wiele gatunków, ale samo życie by przetrwało.
      Alexis L. Quintana z Uniwersytetu w Alicante oraz Nicholas J. Wright i Juan Martínez García z Keele University przyjrzeli się 24 706 gwiazdom OB znajdujących się w odległości 1 kiloparseka (kpc), czyli 3261 lat świetlnych od Słońca. Dzięki temu obliczyli tempo tworzenia się takich gwiazd, liczbę supernowych oraz liczbę supernowych bliskich Ziemi. Na podstawie tych obliczeń doszli do wniosku, że supernowe mogły odpowiadać za dwa masowe wymierania na Ziemi – ordowickie sprzed 438 milionów lat oraz dewońskie, do którego doszło 374 miliony lat temu.
      Autorzy wspomnianych badań z 2020 roku stwierdzili, że supernowa Typu II była odpowiedzialna z kryzys Hangenberg, końcowy epizod wymierania dewońskiego. Ich zdaniem, promieniowanie z wybuchu supernowej docierało do Ziemi przez 100 000 lat, doprowadziło do olbrzymiego zubożenia warstwy ozonowej i masowego wymierania.
      Quintana, Wright i García wyliczają, że do eksplozji supernowej w odległości 20 pc od Ziemi dochodzi raz na około 2,5 miliarda lat.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Curtin University School of Earth and Planetary Sciences i Geological Survey of Western Australia, odkryli najstarszy na Ziemi krater uderzeniowy. Znaleźli go na obszarze North Pole Dome znajdującym się w regionie Pilbara, w którym znajdują się najstarsze skały na naszej planecie. Krater powstał 3,5 miliarda lat temu.
      Przed naszym odkryciem najstarszy znany krater uderzeniowy na Ziemi liczył sobie 2,2 miliarda lat, mówi profesor Tim Johnson i dodaje, że znalezienie starszego krateru w dużym stopniu wpływa na założenie dotyczące historii Ziemi.
      Krater zidentyfikowano dzięki stożkom zderzeniowym. To struktura geologiczna, która powstaje w wyniku szokowego przekształcenia skał. Stożki powstają w pobliżu kraterów uderzeniowych czy podziemnych prób jądrowych. W badanym miejscu stożki powstały podczas upadku meteorytu pędzącego z prędkością ponad 36 000 km/h. Było to potężne uderzenie, w wyniku którego powstał krater o średnicy ponad 100 kilometrów, a wyrzucone szczątki rozprzestrzeniły się po całej planecie.
      Wiemy, że takie zderzenia często miały miejsce na wczesnych etapach powstawania Układu Słonecznego. Odkrycie tego krateru i znalezienie innych z tego samego czasu może nam wiele powiedzieć o pojawieniu się życia na Ziemi. Kratery uderzeniowe tworzą bowiem środowisko przyjazne mikroorganizmom, takie jak zbiorniki z gorącą wodą, dodaje profesor Chris Kirkland.
      Olbrzymia ilość energii, jaka wyzwoliła się podczas uderzenia, mogła mieć wpływ na kształt młodej skorupy ziemskiej, wciskając jedne jej części pod drugie lub wymuszając ruch magmy w górę. Uderzenie mogło tez przyczynić się do powstania kratonu, dużego stabilnego fragmentu skorupy ziemskiej, będącego zalążkiem kontynentu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Hel jest, po wodorze, najbardziej rozpowszechnionym pierwiastkiem we wszechświecie. Jest jednak najmniej aktywnym pierwiastkiem chemicznym, dlatego też niemal cały hel, który mógł kiedykolwiek istnieć na Ziemi uleciał w przestrzeń kosmiczną, gdyż nie utworzył związków z żadnym innym pierwiastkiem. Taki przynajmniej pogląd panował do tej pory, a teraz może się on zmienić. Naukowcy z Japonii i Tajwanu wykazali właśnie, że w warunkach wysokiego ciśnienia hel może wiązać się z żelazem, co może oznaczać, że olbrzymie ilości helu występują w jądrze Ziemi. Jeśli tak jest, odkrycie to będzie miało olbrzymie znaczenie dla opisu wnętrza naszej planety i może wpłynąć na rozumienie mgławicy, z której powstał Układ Słoneczny.
      W skałach wulkanicznych od dawna wykrywany jest 3He. Izotop ten, w przeciwieństwie do znacznie bardziej rozpowszechnionego 4He, nie powstaje na Ziemi. Uważa się, że głęboko w ziemskim płaszczu istnieją pierwotne materiały, które go zawierają. Eksperymenty przeprowadzone przez japońsko-tajwański zespół rzucają wyzwanie temu przekonaniu.
      Od wielu lat badam procesy geologiczne i chemiczne zachodzące w głębi Ziemi. Biorąc pod uwagę panujące tam temperatury i ciśnienie, prowadzimy eksperymenty, które odzwierciedlają te warunki. Często więc korzystamy z rozgrzewanej laserowo komory diamentowej, mówi profesor Kei Hirose z Uniwersytetu Tokijskiego.
      W tym przypadku naukowcy miażdżyli w imadle diamentowym żelazo i hel. Poddawali je oddziaływaniu ciśnienia od 5 do 54 gigapaskali i temperatury o 1000 do 2820 kelwinów. Okazało się, że żelazo w takich warunkach zawiera nawet 3,3% helu. To tysiące razy więcej, niż uzyskiwano we wcześniejszych podobnych eksperymentach. Profesor Hirose podejrzewa, że częściowo odpowiada za to któryś z nowych elementów eksperymentu.
      Hel bardzo łatwo ucieka do otoczenia w standardowych warunkach temperatury i ciśnienia. Musieliśmy coś wymyślić, by uniknąć tego podczas pomiarów. Mimo, że sam eksperyment prowadziliśmy przy bardzo wysokich temperaturach, pomiarów dokonywaliśmy w warunkach kriogenicznych. W ten sposób uniknęliśmy ucieczki helu i mogliśmy go wykrywać w żelazie, wyjaśnia uczony. Badania wykazały, że hel został wbudowany w strukturę krystaliczną żelaza i pozostawał w niej nawet, gdy ciśnienie uległo zmniejszeniu.
      Wyniki eksperymentu oznaczają, że w jądrze Ziemi może znajdować się hel z mgławicy, która utworzyła Układ Słoneczny. Jeśli tak, to znaczy, że znajduje się tam gaz z mgławicy, a zawierał on też wodór. To zaś może oznaczać, że przynajmniej część wody na naszej planecie pochodzi z tego pierwotnego gazu. Niewykluczone zatem, że specjaliści muszą przemyśleć teorie dotyczące formowania się i ewolucji Ziemi.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Niskie średnie temperatury na Ziemi, które umożliwiły uformowanie się pokryw lodowych na biegunach, są czymś rzadkim w historii naszej planety. Nowe badania, przeprowadzone przez zespół pod kierunkiem naukowców z University of Leeds, dowodzą, że aby takie warunki klimatyczne się pojawiły, musi dojść do zbiegu wielu złożonych procesów. Uczeni badali, dlaczego Ziemia przez zdecydowaną większość swojej historii była znacznie cieplejsza niż obecnie i nie istniały na niej pokrywy lodowe na biegunach.
      Dotychczas proponowano wiele hipotez, które miały wyjaśnić pojawianie się glacjałów na Ziemi. Mówiono o zmniejszonym wulkanizmie, zwiększonym pochłanianiu atmosferycznego węgla przez roślinność czy też o reakcji dwutlenku węgla ze skałami. Ciepłe warunki klimatyczne farenozoiku zostały przerwane przez dwa długotrwałe okresy ochłodzenia, w tym obecny, trwający od około 34 milionów lat. Te chłodniejsze okresy zbiegają się z niższą zawartością CO2 w atmosferze, jednak nie jest jasne, dlaczego poziom CO2 spada, piszą naukowcy na łamach Science Advances.
      Na potrzeby badań stworzyli nowy długoterminowy „Earth Evolution Model”. Jego powstanie było możliwe dzięki ostatnim postępom w technikach obliczeniowych. Model pokazał, że wspomniane ochłodzenia spowodowane były nie pojedynczym procesem, a ich zbiegiem. To wyjaśnia, dlaczego okresy chłodne są znacznie rzadsze od okresów ciepłych.
      Wiemy teraz, że powodem, dla którego żyjemy na Ziemi z pokrywami lodowymi na biegunach, a nie na planecie wolnej od lodu, jest przypadkowy zbieg bardzo małej aktywności wulkanicznej i bardzo rozproszonych kontynentów z wysokimi górami, które powodują duże opady i w ten sposób zwiększają usuwanie węgla z atmosfery. Bardzo ważnym wnioskiem z naszych badań jest stwierdzenie, że naturalny mechanizm klimatyczny Ziemi wydaje się faworyzować istnienie gorącego świata z wysokim stężeniem CO2 i brakiem pokryw lodowych, a nie obecny świat z niskim stężeniem CO2, pokryty częściowo lodem, mówi główny autor badań, Andrew S. Meredith. To prawdopodobnie preferencja systemu klimatycznego Ziemi ku gorącemu klimatowi uchroniła naszą planetę przed katastrofalnym całkowitym zamienieniem naszej planety w lodową pustynię. Dzięki niej życie mogło przetrwać.
      Drugi z głównych autorów badań, profesor Benjamin Mills zauważa, że z badań płyną bardzo ważne wnioski. "Nie powinniśmy spodziewać się, że Ziemia zawsze powróci do chłodniejszego okresu, jaki charakteryzował epokę przedprzemysłową. Obecna Ziemia, z jej pokrywami lodowymi jest czymś nietypowym w historii planety. Jednak ludzkość zależy od tego stanu. Powinniśmy zrobić wszystko, by go zachować i powinniśmy być ostrożni, czyniąc założenia, że zatrzymując emisję powrócimy do stanu sprzed globalnego ocieplenia. W swojej długiej historii klimat Ziemi był przeważnie gorący. Jednak w czasie historii człowieka był chłodny.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...