Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

System pisma, którym się posługujemy, może wpływać na przetwarzanie mowy przez mózg

Rekomendowane odpowiedzi

Gdy uczymy się czytać, w naszych mózgach tworzą się połączenia pomiędzy korą wzrokową a obszarami odpowiedzialnymi za przetwarzanie języka. Symbole, które widzimy na papierze, zostają powiązane z dźwiękami i znaczeniami. Wydaje się zatem logiczne, że umiejętność czytania i pisania powinna wpływać na naszą zdolność przetwarzania mowy. Kwestię tę postanowili zgłębić naukowcy z Uniwersytetu w Zurichu.

Wcześniejsze badania wykazały, że w alfabetycznych systemach pisma, gdzie poszczególne znaki oznaczają samogłoski i spółgłoski, rzeczywiście istnienie zależność pomiędzy umiejętnością czytania i pisania a zdolnościami do przetwarzania mowy przez mózg. Jednak na Bliskim Wschodzie, w Afryce Wschodniej oraz Południowej i Wschodniej Azji wiele osób korzysta z systemów pisma, w których znaki oznaczają sylaby lub całe słowa, a nie pojedyncze głoski. Chcieliśmy wiedzieć, czy wykorzystanie pisma niealfabetycznego ma taki sam wpływ na mózg jak pisma alfabetycznego, mówi profesor neurolingwistyki Alexis Hervais-Adelman.

Naukowcy z Zurichu, we współpracy z uczonymi z Instytutu Psycholingwistyki im. Maxa Plancka w Nijmegen oraz zespołem ze stanu Uttar Pradesh w Indiach, odtwarzali zdania nagrane w hindi dwóm grupom osób: umiejącym czytać i pisać oraz analfabetom. Hindi zapisywany jest pismem sylabicznym, dewanagari. Podczas odtwarzania aktywność mózgu badanych była rejestrowana za pomocą rezonansu magnetycznego. Wśród użytkowników hindi nie zauważono różnicy pomiędzy osobami piśmiennymi a niepiśmiennymi w sposobie przetwarzania mowy przez mózg.

Wyniki badań są więc inne, niż uzyskane podczas analogicznych eksperymentów na osobach posługujących się pismem alfabetycznym. W ich przypadku umiejętność pisania i czytania wiązała się z większą aktywnością mózgu w obszarach odpowiedzialnych za przetwarzania mowy podczas słuchania słowa mówionego. Nasze odkrycie przeczy wcześniejszym przypuszczeniom na temat wpływu umiejętności czytania i pisania na sposób przetwarzania języka przez mózg. Okazuje się, że to rodzaj pisma, jakim się posługujemy, wpływa na to, jak nasz mózg przetwarza mowę, mówi Hervais-Adelman.

Pomimo tego, że u badanych użytkowników języka hindi nie było różnic w sposobie przetwarzania mowy, naukowcy zauważyli, że osoby potrafiące czytać i pisać miały lepszą łączność funkcjonalną pomiędzy obszarami mózgu odpowiedzialnymi za grafomotorykę, czyli proces pisania ręcznego, a obszarami mózgu odpowiedzialnymi za przetwarzanie mowy. Połączenia te uaktywniały się, gdy osoby posługujące się pismem słyszały nagrania.

Zdaniem autorów badań, może to sugerować, że to umiejętność pisania, a nie sama umiejętność czytania, wpływa na przetwarzanie języka przez mózg. Tego typu badania mogą – ukierunkowane na związek pomiędzy umiejętnością pisania a przetwarzaniem mowy – w przyszłości doprowadzić do opracowania metod leczenia dysleksji.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Słuchając ulubionej muzyki odczuwamy przyjemność, niejednokrotnie wiąże się to z przeżywaniem różnych emocji. Teraz, dzięki pracy naukowców z fińskiego Uniwersytetu w Turku dowiadujemy się, w jaki sposób muzyka na nas działa. Uczeni puszczali ochotnikom ich ulubioną muzykę, badając jednocześnie ich mózgi za pomocą pozytonowej tomografii emisyjnej (PET). Okazało się, że ulubione dźwięki aktywują układ opioidowy mózgu.
      Badania PET wykazały, że w czasie gdy badani słuchali ulubionej muzyki, w licznych częściach mózgu, związanych z odczuwaniem przyjemności, doszło do uwolnienia opioidów. Wzorzec tego uwolnienia powiązano ze zgłaszanym przez uczestników odczuwaniem przyjemności. Dodatkowo za pomocą funkcjonalnego rezonansu magnetycznego (fMRI) skorelowano indywidualną dla każdego z badanych liczbę receptorów opioidowych z aktywacją mózgu. Im więcej receptorów miał mózg danej osoby, tym silniejsze pobudzenie widać było na fMRI.
      Po raz pierwszy bezpośrednio obserwujemy, że słuchanie muzyki uruchamia układ opioidowy mózgu. Uwalnianie opioidów wyjaśnia, dlaczego muzyka powoduje u nas tak silne uczucie przyjemności, mimo że nie jest ona powiązana z zachowaniami niezbędnymi do przetrwania, takimi jak pożywianie się czy uprawianie seksu, mówi Vesa Putkinen. Profesor Luri Nummenmaa dodaje, że układ opioidowy powiązany jest też ze znoszeniem bólu, zatem jego pobudzenie przez muzykę może wyjaśniać, dlaczego słuchanie muzyki może działać przeciwbólowo.
      Receptorem, który zapewnia nam przyjemność ze słuchania muzyki jest μ (MOR). Jego aktywacja powoduje działanie przeciwbólowe – to na niego działają opioidy stosowane w leczeniu bólu, euforię (przez co przyczynia się do uzależnień) czy uspokojenie oraz senność.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Badania przeprowadzone na gryzoniach w średnim wieku wskazują, że brak witaminy K może zwiększać stan zapalny i zakłócać proliferację komórek w hipokampie, części mózgu odpowiedzialnej za pamięć i uczenie się. Wyniki pokazują zatem, w jaki sposób niedobór witaminy K może wpływać na nasze zdolności poznawcze w miarę, jak przybywa nam lat.
      Witamina K obecna jest w zielonych warzywach liściastych, jak brukselka, szpinak, brokuły czy jarmuż. Wiadomo, że odkrywa ważną rolę w krzepnięciu krwi, prawdopodobnie ma też pozytywny wpływ na zdrowie układu krwionośnego i stawy. Teraz dowiadujemy się, że może mieć też wpływ na ludzki mózg.
      Istnieją badania sugerujące, że witamina K chroni mózg przed spadkiem zdolności poznawczych w miarę, jak przybywa nam lat. Nasze prace mają na celu zrozumienie tego mechanizmu, mówi główny autor badań Tong Zheng z Tufts University.
      Naukowcy przez pół roku karmili jedną grupę myszy standardową dietą, a druga grupa otrzymywała dietę ubogą w witaminę K. Naukowcy skupili się na metachinonie-4 (witamina K2 MK-4), związku z grupy witamin K, który występuje w tkance mózgowej. Odkryli, że u myszy karmionych dietą ubogą w witaminę K poziom tego związku był znacząco niższy. A jego niedobór wiązał się z zauważalnym spadkiem zdolności poznawczych zwierząt. Podczas testów takie myszy miały na przykład problem w odróżnieniu nowych obiektów do już znanych, co jest jasną wskazówką problemów z pamięcią. Podczas innego z badań – mających sprawdzić orientację w przestrzeni – myszy miały nauczyć się, gdzie znajduje się ukryta platforma z wodą. Te z niedoborem witaminy K uczyły się znacznie dłużej.
      Badania tkanki mózgowej myszy wykazały istnienie znaczących zmian w hipokampie. U tych, które spożywały zbyt mało witaminy K doszło do zmniejszenia liczby komórek ulegających proliferacji w zakręcie zębatym, co przekładało się na mniej intensywną neurogenezę. Neurogeneza odgrywa kluczową rolę w procesach uczenia się i zapamiętywania, a jej zaburzenie może bezpośrednio wpływać na zaobserwowany spadek zdolności poznawczych, wyjaśnia Zheng. Jakby jeszcze tego było mało, naukowcy znaleźli dowody na zwiększenie się stanu zapalnego w mózgach myszy z niedoborem witaminy K. Odkryliśmy w nich większą liczbę nadaktywnych komórek mikrogleju, dodaje uczony.
      Autorzy badań podkreślają, że ich wyniki nie oznaczają, iż ludzie powinni przyjmować suplementy witaminy K. Ludzie powinni stosować zdrową dietę i jeść warzywa, mówi profesor Sarah Booth. Uczeni z Tufts University współpracują z Rush University Medical Center w Chicago, gdzie zespół Booth prowadzi badania obserwacyjne dotyczące ludzkiego mózgu i zdolności poznawczych. Wiemy z nich, że zdrowa dieta działa, że ludzie, który nie odżywiają się zdrowo, nie żyją tak długo, a ich zdolności poznawcze nie dorównują ludziom ze zdrową dietą. Łącząc badania na ludziach i zwierzętach możemy lepiej poznać mechanimy różnych zjawisk i dowiedzieć się, w jaki sposób długoterminowo poprawić zdrowie mózgu, dodaje uczona.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Homo sapiens pojawił się około 230 000 lat temu. Kiedy zaś powstała mowa w znanej nam obecnie formie? Próby wyznaczenia tego momentu trwają od dawna i bazują na bardzo różnych dowodach, od skamieniałości po dowody oparte na wytworach kultury. Nowa analiza, przeprowadzona na podstawie dowodów genetycznych, przez naukowców z USA, Brazylii, Japonii i Szwajcarii wskazuje, że wśród H. sapiens zdolność do wytworzenia języka w takiej formie, w jakiej znamy go dzisiaj, istniała już 135 000 lat temu. A 35 000 lat później komunikacja językowa w znanej nam obecnie formie była rozpowszechniona wśród naszego gatunku.

      Autorzy badań oparli się przy tym na niedawnych badaniach DNA, które wykazały, że do rozdzielenia populacji H. sapiens ze wspólnego źródła doszło właśnie około 135 000 la temu. Skoro wówczas ludzka populacja zaczęła się dzielić na wiele różnych grup, a wszystkie podziały prowadziły do powstania kolejnych populacji o pełnych zdolnościach językowych, to oznacza, że zdolności takie musiały istnieć przed pierwotnym podziałem. Gdyby bowiem pojawiły się później, moglibyśmy się spodziewać, że będą obecnie istniały populacje, które nie posługują się złożonym językiem lub używające całkowicie innych metod komunikacji. Analiza nie mówi nam, kiedy dokładnie pojawiła się zdolność do wytworzenia mowy, ale kiedy najpóźniej musiała już istnieć.

      Naukowcy, którzy wyniki swoich badań opublikowali we Frontiers in Psychology, przeanalizowali 15 studiów genetycznych, jakie ukazały się w ciągu ostatnich 18 lat. Trzy z tych studiów skupiały się na badaniu chromosomu Y, trzy na mitochondrialnym DNA, a dziewięć dotyczyło badań całego genomu. Analiza tych badań pokazała, że około 135 000 lat temu grupy H. sapiens zaczęły tak bardzo oddalać się od siebie, że powstały różnice genetyczne i populacje regionalne. Analiza tych różnic pozwoliła zaś na stwierdzenie, kiedy po raz ostatni H. sapiens stanowił jedną, niepodzieloną regionalnie grupę.
      Nie są to pierwsze analizy tego typu. Jak przypomina Shigeru Miyagawa, pierwsze analizy tego typu prowadzono już w 2017 roku, jednak wówczas naukowcy mieli do dyspozycji mniej danych niż obecnie. Teraz, dzięki opublikowaniu kolejnych badań DNA, można było określić, kiedy ludzkość zaczęła tworzyć subpopulacje.

      Profesor Miyagawa, podobnie jak wielu innych lingwistów, uważa, że wszystkie języki są ze sobą spokrewnione. Przed laty wspominaliśmy o jego książce, w której poruszał kwestię podobieństw pomiędzy językiem angielskim i japońskim.

      Niektórzy naukowcy, opierając się na cechach fizjologicznych naczelnych uważają, że zdolność do wytworzenia języka pojawiła się miliony lat temu. Jednak profesor Miyagawa mówi, że pytanie nie brzmi, kiedy naczelne zyskały zdolność do wydawania pewnych dźwięków, ale kiedy człowiek miał na tyle rozwinięte zdolności poznawcze, by stworzyć język takim, jakim znamy go obecnie. Język z zasobem słownictwa i gramatyki pozwalający na generowanie nieskończonej liczby wypowiedzi opartych na ustalonych zasadach. Słownictwo i składnia działają razem na rzecz tego niezwykle skomplikowanego systemu. Żadne inne zwierzę nie posiada podobnych zdolności komunikacyjnych, mówi Miyagawa. Do stworzenia takiego systemu konieczne było pojawienie się odpowiednich zdolności poznawczych. Język, jak uważa Miyagawa, jest bowiem zarówno systemem poznawczym, jak i komunikacyjnym. Moim zdaniem pojawił się on wcześniej niż 135 000 lat temu, początkowo jako indywidualne zdolności poznawcze, ale dość szybko przekształcił się w system komunikacyjny, dodaje uczony.

      Na pytanie, kiedy język był szeroko stosowany, może odpowiedzieć archeologia. Około 100 000 lat temu pojawiają się dowody na myślenie symboliczne u ludzi. I tylko u ludzi. Zachowania wskazujące na jednoczesne używanie języka oraz na myślenie symboliczne widoczne są wyłącznie w zapisie archeologicznym H. sapiens, czytamy w artykule. Jeden z członków grupy badawczej, Ian Tattersall z Amerykańskiego Muzeum Historii Naturalnej, zaproponował, że to właśnie język umożliwił rozwój myślenia symbolicznego. Był on tym elementem, który uruchomił zachowania charakterystyczne dla człowieka współczesnego. W jakiś sposób język stymulował myślenia i pomógł w pojawieniu się myślenia symbolicznego. Jeśli mamy rację, to ludzie zaczęli – dzięki językowi – uczyć się od siebie nawzajem, co pociągnęło za sobą pojawienie się innowacji, jakie widzimy w zapisie archeologicznym sprzed 100 000 lat, wyjaśnia Miyagawa.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wystarczy 5 dni nadmiernego spożywania batonów czekoladowych, chipsów i innego śmieciowego jedzenia, by doszło do zmian w aktywności mózgu. Niemieccy naukowcy wykazali, że krótkoterminowe spożywanie słodyczy i tłuszczów uruchamia mechanizm gromadzenia tłuszczu w wątrobie oraz zaburza reakcję mózgu na insulinę, a skutki tego utrzymują się po zaprzestaniu jedzenia wspomnianych pokarmów. Wzorce pracy mózgu po kilku dniach spożywania śmieciowego jedzenia są podobne do tych, widocznych u osób z otyłością. Nie można wykluczyć, że reakcja mózgu na insulinę pozwala mu zaadaptować się do krótkoterminowych zmian diety i ułatwia rozwój otyłości oraz innych chorób.
      Nie spodziewałam się, że skutki będą tak bardzo widoczne u zdrowych ludzi, mówi główna autorka badań, neurolog Stephanie Kullmann. Celem naukowców było zbadanie wpływu krótkoterminowego spożywania wysoce przetworzonych i kalorycznych produktów na reakcję mózgu na insulinę, zanim jeszcze zaczynamy przybierać na wadze.
      Do badań zaangażowano 29 zdrowych mężczyzn w wieku 19–27 lat, których BMI mieściło się w zakresie 19–25 kg/m2 (obecnie przygotowywane są analogiczne badania na kobietach). Podzielono ich na dwie grupy. To jednej, która miała spożywać wysokokaloryczną dietę, przypisano 18 osób. Pozostali stanowili grupę kontrolną. Grupa na diecie wysokokalorycznej miała dziennie spożywać dodatkowo 1500 kcal w postaci chipsów, batonów itp. Aktywność fizyczną ograniczono do 4000 kroków dziennie.
      Początkowo osoby przypisane do grupy spożywającej dodatkowe kalorie zareagowały na to entuzjastycznie. Jednak już w czwartym dniu eksperymentu jedzenie batonów czy chipsów było dla nich męczarnią. W efekcie spożyli oni średnio 1200 kcal dziennie więcej, a nie zakładane 1500 kcal. Mimo to okazało się, że znacząco z 1,55% (± 2,2%) do 2,54% (± 3,5%) zwiększyło się u nich otłuszczenie wątroby. Nie zauważono znaczących różnic w masie działa, zmiany wrażliwości na insulinę w innych tkankach niż mózgu czy wskaźnikach zapalnych.
      Po pięciu dniach u osób z grupy zjadającej słodkie i tłuste przekąski doszło do zmniejszenia czułości układu nagrody. Niekorzystne skutki śmieciowej diety utrzymywały się przez około tydzień po powrocie do diety prawidłowej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Szwedzcy uczeni dokonali czegoś niezwykłego. Połączyli indywidualne komórki z organicznymi elektrodami. Ich osiągnięcie daje nadzieję, że w przyszłości będziemy w stanie bardzo precyzyjnie leczyć choroby neurologiczne. I nie tylko je.
      Mózg jest kontrolowany przez sygnały elektryczne, które są z kolei przekładane na substancje chemiczne służące do komunikacji między komórkami. Nie od dzisiaj wiemy, że mózg można stymulować za pomocą prądu elektrycznego. Jednak stosowane metody są bardzo nieprecyzyjne i wpływają na duże obszary mózgu. W zwiększeniu precyzji pomagają metalowe elektrody. Jednak ich mocowanie do mózgu stwarza ryzyko uszkodzenia tkanki, pojawienia się stanu zapalnego czy blizn. Rozwiązaniem mogą być miękkie polimerowe elektrody.
      Naszym celem jest połączenie układu biologicznego z elektrodami, używając przy tym organicznych polimerów przewodzących. Polimery są miękkie i wygodne w używaniu, mogą przekazywać zarówno sygnał elektryczny, jak i jony. Są więc lepszym materiałem niż konwencjonalne elektrody, mówi Chiara Musumeci z Uniwersytetu w Linköping.
      Uczona wraz z kolegami z Karolinska Institutet opracowała technikę mocowania organicznych elektrod do błon komórkowych pojedynczych komórek. Dotychczas udawało się to osiągnąć w przypadku genetycznie modyfikowanych komórek, zmienionych tak, by ich błony komórkowe łatwiej łączyły się z elektrodami. Szwedzi są pierwszymi, którzy wykonali takie połączenie z niezmodyfikowanymi komórkami, uzyskali ścisłe dopasowanie, a elektroda nie wpłynęła na funkcjonowanie komórek.
      Technika połączenia jest dwuetapowa. W pierwszym kroku wykorzystywana jest molekuła kotwicząca, za pomocą której tworzy się punkt zaczepienia do błony komórkowej. Na drugim końcu molekuły znajduje się struktura, do której mocowana jest następnie elektroda.
      Na kolejnym etapie badań naukowcy będą starali się opracować sposób na bardziej równomierne zaczepianie molekuły kotwiczącej, uzyskanie bardziej stabilnego połączenia oraz zbadanie, jak takie połączenie zachowuje się z upływem czasu. Przed nimi jeszcze sporo wyzwań. Naukowcy wciąż nie są w stanie z całą pewnością stwierdzić, że ich technika sprawdzi się w przypadku żywych tkanek. Na razie skupiają się nad uzyskaniem pewnego, stabilnego i bezpiecznego połączenia z komórką.
      Jeśli okaże się, że takie połączenia sprawdzają się w żywych organizmach, przyjdzie czas na badania, które dadzą odpowiedź na pytanie, w terapiach jakich chorób można będzie zastosować elektrody łączone z poszczególnymi komórkami.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...