Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Reaktor fuzyjny można ochronić, pozwalając na małe niestabilności plazmy
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Fuzja jądrowa to obietnica czystego, bezpiecznego i praktycznie nieskończonego źródła energii. Badania nad nią trwają od dziesięcioleci i nic nie wskazuje na to, byśmy w najbliższym czasie mogli zastosować ją w praktyce. Naukowcy dokonują powolnych, mniejszych lub większych, kroków na przód w kierunku jej opanowania. Uczeni z University of Texas, Los Alamos National Laboratory i Type One Energy Group rozwiązali właśnie poważny problem, który od 70 lat nękał jeden z rodzajów reaktorów fuzyjnych – stellaratory – spowalniając prace nad nimi. Jego rozwiązanie przyda się również w udoskonaleniu tokamaków, innego – znacznie bardziej popularnego – projektu reaktora fuzyjnego.
Jednym z poważnych wyzwań stojących przed wykorzystaniem w praktyce fuzji jądrowej jest utrzymanie wysokoenergetycznych cząstek wewnątrz reaktora. Gdy takie wysokoenergetyczne cząstki alfa wyciekają, uniemożliwia to uzyskanie wystarczająco gorącej i gęstej plazmy, niezbędnej do podtrzymania reakcji. Inżynierowie opracowali złożone metody zapobiegania wyciekom za pomocą pól magnetycznych, jednak w polach takich występują luki, a przewidzenie ich lokalizacji i zapobieżenie im wymaga olbrzymich mocy obliczeniowych i wiele czasu.
Na łamach Physical Review Letters ukazał się artykuł, w którym wspomniani wcześniej naukowcy informują o opracowaniu metody 10-krotnie szybszego przewidywania miejsc pojawiania się luk, bez poświęcania dokładności.
Rozwiązaliśmy problem, który był nierozwiązany od 70 lat. Będzie to znaczący przełom w sposobie projektowania reaktorów, mówi profesor Josh Burry z University of Texas. W stellaratorach wykorzystywany jest układ cewek, za pomocą których generowane są pola magnetyczne. Nazywany jest on „magnetyczną butelką”. Miejsca występowania dziur w magnetycznej butelce można precyzyjnie przewidywać korzystając z zasad dynamiki Newtona. Jednak działanie takie wymaga olbrzymich ilości czasu i wielkich mocy obliczeniowych. Co więcej, by zaprojektować stellarator idealny konieczna byłaby symulacja setek tysięcy różnych projektów i stopniowe dostosowywanie do każdego z nich układu magnetycznej butelki.
By więc oszczędzić czas i pieniądze podczas obliczeń standardowo używa się teorii perturbacji, która daje wyniki przybliżone. Są one jednak znacznie mniej dokładne. Autorzy najnowszych badań podeszli do problemu w inny sposób, wykorzystując teorię symetrii.
Obecnie nie ma innego niż nasz teoretycznego sposobu na rozwiązanie kwestii uwięzienia cząstek alfa. Bezpośrednie zastosowanie zasad dynamiki Newtona jest zbyt kosztowne, a teoria perturbacji związana jest z poważnymi błędami. Nasza teoria jest pierwszą, która radzi sobie z tymi ograniczeniami, dodaje Burry.
Co więcej, nowa praca może pomóc też w rozwiązaniu podobnego, ale innego problemu występującego w tokamakach. W nich z kolei problemem są wysokoenergetyczne elektrony, które dziurawią osłony reaktora. Nowa metoda może pozwolić na zidentyfikowanie luk w polach magnetycznych, przez które elektrony wyciekają.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Firma TAE Technologies, która od niemal 30 lat prowadzi badania nad fuzją jądrową, ogłosiła, że dokonała znaczącego postępu pod względem wydajności i sprawności reaktora fuzyjnego. Wyniki naszych eksperymentów, opublikowane na łamach recenzowanego pisma Nature Communications, dowodzą, że TAE opracowało taką metodę formowania i optymalizacji plazmy, która zwiększa wydajność, znacząco obniża złożoność i koszty oraz przyspiesza moment, w którym zademonstrujemy pozyskiwanie energii netto i komercyjną fuzję jądrową, czytamy w firmowym oświadczeniu.
Firma twierdzi, że jej ostatnie pracy udowodniły, iż z reaktora, który rozwija, można będzie pozyskać 100-krotnie więcej energii niż z typowego tokamaka korzystającego z pola magnetycznego o tej samej sile, zdolnego do uwięzienia tej samej ilości plazmy. Dodatkowo jej system jest znacznie prostszy, dzięki czemu jest znacznie tańszy w budowie i utrzymaniu.
TAE Technologies powstała w 1998 roku. Przez wiele lat firma unikała rozgłosu, nie zdradzając o sobie zbyt wielu informacji. Witrynę internetową uruchomiła dopiero w 2015 roku. Wiadomo, że w 2021 roku zatrudniała ponad 250 pracowników i zebrała finansowanie w wysokości 880 milionów USD. Jej głównymi sponsorami są Goldman Sachs, Vulcan Inc. (firma założyciela Microsoftu Paula Allena) czy fundusze venture capital jak Venrock i New Enterprise Associates.
TAE Technologies rozwija technologię fuzji aneutronowej za pomocą techniki FRC (Field-Reversed Configuration). Fuzja aneutronowa to rodzaj syntezy termojądrowej, w której bardzo mało energii jest unoszonej przez neutrony. Jest ona znacznie bezpieczniejsza od tradycyjnej fuzji jądrowej, nie wymaga tak dobrego ekranowania, a pozyskana z niej energia jest łatwiejsza do przetworzenia na użyteczny dla nas prąd. Nie ma też ryzyka, że poszczególne elementy reaktora staną się radioaktywne, więc trzeba będzie je w specjalny sposób zabezpieczać, gdy przestaną być używane. Jednak uzyskanie fuzji aneutronowej jest znacznie trudniejsze, wymaga bardziej ekstremalnych warunków, niż w przypadku tradycyjnej fuzji z wykorzystaniem deuteru i trytu.
TAE Technologies ma zamiar wykorzystać w swoim reaktorze paliwo wodorowo-borowe (p-B11). To, zdaniem firmy, najczystsze, najbezpieczniejsze i najbardziej przyjazne środowisku paliwo, jakie można wykorzystać w czasie fuzji.
W technice FRC plazma samodzielnie się organizuje i generuje własne pole magnetyczne wewnątrz reaktora, co znacząco zmniejsza zapotrzebowanie na zewnętrzne magnesy i ułatwia działanie reaktora. Sam reaktor jest też prostszy, więc tańszy i łatwiejszy w budowie czy utrzymaniu. Przełom, ogłoszony przez TAE Technologies, polega na rozwiązaniu wcześniejszych problemów z wygenerowaniem i utrzymaniem plazmy, co osiągnięto dzięki wstrzyknięciu wiązki neutralnej wiązki cząstek.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Przed dziewięcioma dniami, 12 lutego, tokamak WEST z francuskiego centrum badawczego Cadarache utrzymał plazmę przez 1337 sekund, bijąc w ten sposób niedawny chiński rekord 1066 sekund. Ostatecznym celem tego typu badań jest opracowanie metod długotrwałego utrzymania plazmy oraz stworzenie materiałów zdolnych wytrzymania niezwykle wysokich temperatur i dawek promieniowania.
Badacze z CEA (Komisja energii atomowej), do którego należy Cadarache zapowiadają, że w najbliższych miesiącach znacząco zwiększą zarówno czas utrzymania plazmy, jak i jej temperaturę. Podczas rekordowego eksperymentu plazma w tokamaku była grzana falami radiowymi z pojedynczej anteny o mocy 2 MW. Badacze postawili sobie ambitny cel. Chcą zwiększyć moc grzewczą do 10 MW, wciąż utrzymując plazmę przez ponad 1000 sekund. Jeśli im się uda, będzie to odpowiadało uzyskaniu mocy rzędu gigawatów w dużych reaktorach, takich jak ITER. A to z kolei pozwoli sprawdzić żywotność wolframowych elementów wystawionych na oddziaływanie plazmy w tak ekstremalnych warunkach. Francuscy eksperci wchodzą w skład wielu zespołów pracujących nad opanowaniem fuzji jądrowej. Można ich spotkać przy projektach JT-60SA w Japonii, EAST w Chinach, KSTAR w Korei Południowej oraz, oczywiście, ITER.
Badania prowadzone we wspomnianych tutaj urządzeniach maja na celu opanowanie fuzji jądrowej i zapewnienie nam w przyszłości niezbędnej energii. Fuzja jądrowa – czyli reakcja termojądrowa – to obiecujące źródło energii. Polega ona na łączeniu się atomów lżejszych pierwiastków w cięższe i uwalnianiu energii. To proces, który zasila gwiazdy. Taki sposób produkcji energii na bardzo wiele zalet. Nie dochodzi tutaj do uwalniania gazów cieplarnianych. Na Ziemi są olbrzymie zasoby i wody i litu, z których można pozyskać paliwo do fuzji jądrowej, deuter i tryt. Wystarczą one na miliony lat produkcji energii. Takiego luksusu nie mamy ani jeśli chodzi o węgiel czy gaz ziemny, ani o uran do elektrowni atomowych. Tego ostatniego wystarczy jeszcze na od 90 (według World Nuclear Association) do ponad 135 lat (wg. Agencji Energii Atomowej). Fuzja jądrowa jest niezwykle wydajna. Proces łączenia atomów może zapewnić nawet 4 miliony razy więcej energii niż reakcje chemiczne, takie jak spalanie węgla czy gazu i cztery razy więcej energii niż wykorzystywane w elektrowniach atomowych procesy rozpadu atomów.
Co ważne, w wyniku fuzji jądrowej nie powstają długotrwałe wysoko radioaktywne odpady. Te, które powstają są na tyle mało radioaktywne, że można by je ponownie wykorzystać lub poddać recyklingowi po nie więcej niż 100 latach. Nie istnieje też ryzyko proliferacji broni jądrowej, gdyż w procesie fuzji nie używa się materiałów rozszczepialnych, a radioaktywny tryt nie nadaje się do produkcji broni. Nie ma też ryzyka wystąpienia podobnych awarii jak w Czernobylu czy Fukushimie. Jednak fuzja jądrowa to bardzo delikatny proces, który musi przebiegać w ściśle określonych warunkach. Każde ich zakłócenie powoduje, że plazma ulega schłodzeniu w ciągu kilku sekund i reakcja się zatrzymuje.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Astronomowie odkryli wielką galaktykę radiową ze strumieniami plazmy rozciągającymi się na odległość 32-krotnie większą niż średnica Drogi Mlecznej. Kosmiczna megastruktura o średnicy 3,3 miliona lat świetlnych została odkryta przez międzynarodowy zespół astronomów korzystających z południowoafrykańskiego teleskopu MeerKAT. Autorzy badań mają nadzieję, że rzucą one nieco światła na pochodzenie i ewolucję olbrzymich struktur we wszechświecie.
Wielkie galaktyki radiowe (GRG) to duże struktury wystrzeliwujące w przestrzeń kosmiczną dżety plazmy na odległość milionów lat świetlnych. Strumienie te napędzane są przez supermasywne czarne dziury znajdujące się w centrum galaktyk. Jeszcze do niedawna sądzono, że GRG są dość rzadkie. Jednak nowa generacja radioteleskopów, takich jak MeerKAT, pokazała, jak mylne było to przekonanie. W ciągu ostatnich pięciu lat liczba znanych nam GRG dosłownie eksplodowała, dzięki nowym potężnym teleskopom jak MeerKAT, mówi główna autorka badań, studentka Uniwersytetu w Kapsztadzie Kathleen Charlton.
Nowo odkryta galaktyka została nazwana nieoficjalnie „Inkathazo”, co w językach zulu i xhosa znaczy „kłopoty”, gdyż naukowcy mieli problemy ze zrozumieniem procesów tam zachodzących. Nie ma ona takich samych charakterystyk jak wiele innych wielkich galaktyk radiowych. Na przykład dżety plazmy mają niezwykły kształt. Zamiast być proste, jeden z nich jest zagięty.
Inkathazo znajduje się w centrum gromady galaktyk, tymczasem zwykle GRG są izolowane. Gromada powinna przeszkadzać w powstaniu tak rozległych strumieni plazmy. To fascynujące i niespodziewane odkrycie. Znalezienie GRG w gromadzie każe zadać sobie pytania o wpływ interakcji w lokalnym środowisku na formowanie się i ewolucję GRG, dodaje współautor badań, doktor Kshitiji Thorat z Uniwersytetu w Pretorii.
Naukowcy wykorzystali MeerKAT do stworzenia jednej z najdokładniejszych map GRG. Ujawniły on złożoność dżetów plazmy wydobywających się z galaktyki. Okazało się na przykład, że niektóre elektrony niespodziewanie otrzymują duże dawki energii. Być może dzieje się tak, gdy strumień plazmy zderzy się z gorącym gazem w przestrzeniach pomiędzy galaktykami w gromadzie. Nowe odkrycie to wyzwanie dla obecnie obowiązujących modeli. Pokazuje ono, że nie rozumiemy wielu ze zjawisk fizycznych dotyczących plazmy w tak ekstremalnych środowiskach.
Co ciekawe, na niewielkim skrawku nieboskłonu, na którym odkryto Inkathazo, wcześniej znaleziono też dwie inne GRG. Sam fakt, że kierując MeerKAT na niewielki skrawek nieba znaleźliśmy tam w sumie 3 GRG sugeruje, że na południowym nieboskłonie znajduje się olbrzymia liczba nieodkrytych jeszcze wielkich galaktyk radiowych, stwierdza doktor Jacinta Delhaize z Uniwersytetu w Kapsztadzie.
MeerKAT niejednokrotnie dowiódł swoich olbrzymich możliwości, a trzeba pamiętać, że jest on zaledwie prekursorem SKA (Square Kilometre Array), zespołu teleskopów w Australii i RPA. SKA ma rozpocząć badania jeszcze przed końcem obecnej dekady.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z amerykańskich Ames National Laboratory i Iowa State University stoją na czele konsorcjum, które pracuje nad nowymi materiałami dla reaktorów fuzyjnych. Stworzenie odpowiednich materiałów to niezbędny krok, które mają umożliwić komercyjne wykorzystywanie energii z fuzji jądrowej. Badania prowadzone są w ramach programu CHADWICK (Creating Hardened And Durable fusion first Wall Incorporating Centralized Knowledge) ogłoszonego niedawno przez Advanced Research Projects Agency–Energy (ARPA-E).
Celem agencji jest promocja i finansowanie zaawansowanych badań nad technologiami pozyskiwania energii. Przed 2 miesiącami ARPA-E ogłosiła warty 30 milionów USD program CHADWICK, do którego zakwalifikowało się 13 projektów.
Jedną z głównych trudności w pozyskiwaniu energii w procesie fuzji jądrowej jest odpowiednie uwięzienie plazmy, w której odbywa się reakcja. Uwięziona plazma jest jak miniaturowe Słońce zamknięte w pojemniku, który musi wytrzymać oddziaływanie niezwykle wysokiej temperatury, silne promieniowanie i pola magnetyczne, a jednocześnie efektywnie przekazywać ciepło, które jest zamieniane w elektryczność.
Projekt CHADWICK skupia się na pierwszej ścianie reaktora, tej, która otacza plazmę uwięzioną za pomocą silnego pola magnetycznego. Pierwsza ściana składa się z dwóch warstw materiału. Ta wewnętrzna jest blisko plazmy, zewnętrzna pomaga przekazać energię do innych części reaktora.
Pierwsza warstwa musi być wytrzymała, odporna na pęknięcia i erozję. Nie może też być przez długi czas radioaktywna, by po wyłączeniu reaktora można było bezpiecznie przeprowadzić prace w jego wnętrzu. Nicolas Arbigay z Ames National Laboratory kieruje pracami nad udoskonaleniem pierwszej warstwy.
Głównym materiałem, jaki badamy, jest wolfram. Nie licząc węgla, a właściwie jego niektórych form – jak diament – ma on najwyższą temperaturę topnienia ze wszystkich pierwiastków, stwierdził uczony.
Jego laboratorium kupiło ostatnio specjalną platformę do wytwarzania i testowania nowych materiałów. Możemy robić proszki i odlewy różnych stopów, w tym czystego wolframu, wyjaśnia Argibay i dodaje, że w ciągu kilku najbliższych miesięcy laboratorium wzbogaci się w nowe urządzenia, które pozwolą na uzyskiwanie materiałów również w ilości wystarczającej do prowadzenia programów pilotażowych.
Ames Lab zainwestowało też w rzadki system pozwalający na badanie materiałów ogniotrwałych w temperaturze znacznie powyżej 1000 stopni Celsjusza i posiada jedyny w USA komercyjny system testowania takich materiałów w temperaturze do 1500 stopni. To niezwykle ważny element prac nad pierwszą ścianą reaktora fuzyjnego.
Materiał pierwszej ściany jest tym, co utrzymuje całość. Musi być wytrzymały. W ścianie muszą być zintegrowane różne elementy, jak kanały chłodzące, pozwalające na pozyskiwanie ciepła, wyjaśnia Jordan Tiarks. Pracuje on nad kolejnym aspektem reaktora fuzyjnego. Tiarks specjalizuje się w stalach ODS (stale dyspersyjnie umacniane tlenkami) przyszłej generacji. Stale ODS są wzbogacone ceramicznymi nanocząstkami, co poprawia ich właściwości mechaniczne i pozwala przetrwać wysokie promieniowanie. To, czego się dotychczas nauczyliśmy, chcemy wykorzystać do stworzenia nowego materiału, stopu bazującego na wanadzie, który będzie dobrze sprawdzał się w reaktorach fuzyjnych, mówi Tiarks.
Problem w tym, że wanad zachowuje się inaczej niż stal. Ma znacznie wyższą temperaturę topnienia i jest bardziej reaktywny. Nie można go łączyć z ceramiką, więc zespół Tiarksa szuka innych sposobów na tworzenie stopów wanadu. Wykorzystujemy gaz pod wysokim ciśnieniem, by rozbić roztopiony materiał na niewielkie kropelki, które gwałtownie schładzamy i uzyskujemy proszek. Tutaj nie możemy użyć żadnej ceramiki, stwierdza uczony. Dodatkowym problemem jest reaktywność wanadu. Już same proszki są bardzo reaktywne. Jeśli tworzymy z nich aerozol, mogą eksplodować. Na szczęście duża część metali tworzy cienką warstwę tlenu na takich cząstkach, która zapobiega kolejnym reakcjom. Ta warstewka chroni resztę cząstki przed dalszym utlenianiem się. Znaczna część prowadzonych przez nas badań polega na opracowaniu metod zapobiegania gwałtownym reakcjom. Jest to konieczne, by bezpiecznie używać proszku. Jednocześnie zaś nie możemy zbytnio ich utlenić, bo to negatywnie wpłynie na ich właściwości. Opracowanie odpowiednich metod przetwarzania sproszkowanych materiałów opartych na wanadzie pozwoli lepiej kontrolować strukturę drugiej warstwy pierwszej ściany reaktora.
Gdy już odpowiedni materiał zostanie uzyskany, jego testowaniem zajmie się zespół profesora Sida Pathaka z Iowa State University. Uczeni nałożą proszek na odpowiednie powierzchnie i będą badali przede wszystkim odporność tak stworzonych paneli na silne promieniowanie reaktora fuzyjnego. Uważają, że nowy materiał będzie bardziej odporny niż dotychczas używane. Jednak, jak zauważa uczony, negatywne skutki promieniowania ujawniają się w materiale ścian reaktora po 10-20 latach. Projekt badawczy będzie trwał 3 lata, więc nie jest możliwe odtworzenie odpowiednich warunków. Dlatego badania będą prowadzone w Ion Beam Laboratory, gdzie materiał będzie bombardowany za pomocą jonów, a nie neutronów, jakby to miało miejsce w reaktorze. Dodatkową zaletą jest fakt, że materiał potraktowany jonami nie będzie radioaktywny, co ułatwi badania. Z kolei negatywną stroną użycia jonów jest bardzo płytka penetracja. Uszkodzenia materiału pojawią się na głębokości 1-2 mikrometrów, więc ich badanie będzie wymagało użycia wyspecjalizowanych narzędzi.
Opracowanie komercyjnej fuzji jądrowej stawia przed nami jedne z największych wyzwań technologicznych naszych czasów, jednocześnie jednak niesie ze sobą obietnicę olbrzymich korzyści, w postaci nieograniczonego źródła czystej energii, podsumowuje Tiarks.
Fuzja jądrowa – czyli reakcja termojądrowa – to obiecujące źródło energii. Polega ona na łączeniu się atomów lżejszych pierwiastków w cięższe i uwalnianiu energii. To proces, który zasila gwiazdy. Taki sposób produkcji energii na bardzo wiele zalet. Nie dochodzi tutaj do uwalniania gazów cieplarnianych. Na Ziemi są olbrzymie zasoby i wody i litu, z których można pozyskać paliwo do fuzji jądrowej, deuter i tryt. Wystarczą one na miliony lat produkcji energii. Takiego luksusu nie mamy ani jeśli chodzi o węgiel czy gaz ziemny, ani o uran do elektrowni atomowych. Tego ostatniego wystarczy jeszcze na od 90 (według World Nuclear Association) do ponad 135 lat (wg. Agencji Energii Atomowej). Fuzja jądrowa jest niezwykle wydajna. Proces łączenia atomów może zapewnić nawet 4 miliony razy więcej energii niż reakcje chemiczne, takie jak spalanie węgla czy gazu i cztery razy więcej energii niż wykorzystywane w elektrowniach atomowych procesy rozpadu atomów.
Co ważne, w wyniku fuzji jądrowej nie powstają długotrwałe wysoko radioaktywne odpady. Te, które powstają są na tyle mało radioaktywne, że można by je ponownie wykorzystać lub poddać recyklingowi po nie więcej niż 100 latach. Nie istnieje też ryzyko proliferacji broni jądrowej, gdyż w procesie fuzji nie używa się materiałów rozszczepialnych, a radioaktywny tryt nie nadaje się do produkcji broni. Nie ma też ryzyka wystąpienia podobnych awarii jak w Czernobylu czy Fukushimie. Jednak fuzja jądrowa to bardzo delikatny proces, który musi przebiegać w ściśle określonych warunkach. Każde ich zakłócenie powoduje, że plazma ulega schłodzeniu w ciągu kilku sekund i reakcja się zatrzymuje.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.