Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Księżyc powstał w ciągu... kilku godzin

Rekomendowane odpowiedzi

Większość współczesnych teorii dotyczących powstania Księżyca mówi, że miliardy lat temu w Ziemię uderzył obiekt wielkości Marsa, zwany Theią. W wyniku kolizji pojawiła się olbrzymia liczba szczątków, które krążąc wokół Ziemi przez miesiące i lata, uformowały Księżyc. Jednak autorzy autorzy najnowszych badań, w ramach których przeprowadzono symulację w wysokiej rozdzielczości, uważają, że Księżyc powstał... w ciągu kilku godzin.

To otwiera całą gamę nowych możliwości badawczych dotyczących początku ewolucji Księżyca, mówi główny autor badań, Jacob Kegerris. Rozpoczęliśmy ten projekt, nie wiedząc, jakie będą wyniki symulacji w wysokiej rozdzielczości. Byliśmy niezwykle zaskoczeni faktem, że symulacje o standardowej rozdzielczości mogą dawać tak bardzo mylne odpowiedzi.

Uczeni z należącego do NASA Ames Research Center przeprowadzili najbardziej szczegółową symulację dotyczącą powstania Księżyca czy też wyników innych wielkich kolizji. Wykazała ona, że symulacje o niższej rozdzielczości, biorące pod uwagę mniej danych, mogą omijać bardzo ważne aspekty i skutki takich kolizji.

Jeśli chcemy zrozumieć proces powstawania księżyca musimy wziąć pod uwagę to, co o nim wiemy – jego masę, orbitę oraz szczegółowe wyniki analizy skał księżycowych – i stworzyć scenariusz, w wyniku którego zobaczymy taki Księżyc, jakim widzimy go obecnie.

Wcześniejsze teorie dobrze wyjaśniały niektóre właściwości Srebrnego Globu, ale pozostawiały poważne luki. Jedną z takich tajemnic był skład księżycowych skał. Ich sygnatury izotopowe są bardzo podobne do sygnatur izotopowych skał z Ziemi, a odmienne od materiału z Marsa czy innych ciał niebieskich. To najprawdopodobniej oznacza, że materiał, z którego zbudowany jest Księżyc, pochodzi z Ziemi.

Jedne z branych wcześniej pod uwagę scenariuszy zakładały, że po zderzeniu materiał z Thei trafił na orbitę Ziemi i wymieszał się z niewielką ilością materiału z Ziemi. Jednak w takim wypadku izotopowy skład Księżyca nie byłby aż tak bardzo podobny do składu Ziemi. Chyba, że Theia była pod tym względem do Ziemi podobna, co jest jednak mało prawdopodobne. Dlatego też znacznie bardziej prawdopodobnym scenariuszem jest ten, według którego Księżyc powstał głównie z materiału z górnych warstw skorupy ziemskiej. Istnieje też hipoteza mówiąca, że Księżyc powstał wewnątrz obracającej się kuli materiału odparowanego w wyniku kolizji. Jednak nie wyjaśnia ona obecnej orbity Księżyca.

Najnowsza symulacja, pokazująca, że Księżyc uformował się bardzo szybko z materiału z Ziemi, wyjaśnia zarówno jego skład, jak i obecną orbitę. Wynika z niej, że Srebrny Glob utworzył się w ciągu kilku godzin, a jego jądro nie było całkowicie stopione. To wyjaśnia zarówno cienką skorupę oraz orbitę wokół naszej planety. Jest to najbardziej pełne wyjaśnienie obserwowanych obecnie właściwości Księżyca.

Uczeni zaznaczają, że dokładne określenie, która z obecnie proponowanych hipotez jest tą prawdziwą będzie możliwe w przyszłości, gdy kolejne misje przywiozą pobrane z większych głębokości próbki z innych części Księżyca. Wówczas można będzie porównać wyniki badań próbek z proponowanymi scenariuszami.

Prowadzone badania mają znaczenie nie tylko dla określenia ewolucji Księżyca, ale dla lepszego poznania kosmosu. Przestrzeń kosmiczna jest pełna kolizji i pozostałości po nich. Mają one olbrzymi wpływ na tworzenie się i formowanie układów planetarnych.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Koala to jedne z najbardziej rozpoznawalnych i lubianych zwierząt na Ziemi. Te niewielkie ssaki są jednak zagrożone w wyniku utraty i fragmentacji siedlisk oraz trapiących je chorób. Wiemy, że niemal całe życie spędzają na drzewach, schodzą z nich tylko, by przemieścić się na inne drzewo. I pomimo tego, że na gatunek ten zwraca się dużo uwagi, nauka niewiele wie o tych nielicznych chwilach, które zwierzęta spędzają na ziemi. Tymczasem z najnowszych badań wynika, że właśnie to zabija koale.
      Już poprzednie badania zgonów koali pokazały, że do 66% zgonów wśród nich dochodzi w momencie, gdy są na ziemi. Są tam głównie zabijane przez psy oraz samochody. Nie wiemy, jak często koala schodzą z drzew, jak daleko i jak szybko się przemieszczają, jak długo pozostają na ziemi, dlaczego schodzą z drzew. To niezwykle ważne informacje, których potrzebujemy, jeśli chcemy zidentyfikować najbardziej zagrożone obszary lub pory dnia i opracować strategie zmniejszenia zagrożeń czyhających na te zwierzęta, mówi doktorantka Gabriella Sparkes z University of Queensland.
      Uczona wraz z zespołem wyposażyła dzikie koale w nadajniki GPS oraz akcelerometry. Urządzenia założono zwierzętom żyjącym na obszarach, na których wiele drzew wycięto na potrzeby rolnictwa. Pozycję koali rejestrowano co 5 minut, a gdy znalazły się na ziemi, była ona odnotowywana co 5 sekund. Dzięki temu możliwe było precyzyjne określenie zachowań zwierząt.
      Tym, co zaszokowało naukowców, był fakt, jak wiele czasu zwierzęta spędzają na drzewach. Okazało się, że schodzą one z nich zaledwie 2-3 razy w ciągu nocy, a łączny czas przebywania na gruncie wynosi zaledwie około 10 minut. Z badań wynika też, że przebywające na ziemi zwierzę porusza się naprawdę powoli. Niemal tyle samo czasu spędzały na siedzeniu i staniu, co na przemieszczaniu się, a szybciej poruszają się jedynie przez 7% czasu spędzanego na gruncie. To może oznaczać, że zwierzęta bardzo szczegółowo oceniają otocznie, być może starannie wybierają drzewa, na które chcą wejść, a być może szybszy ruch wiąże się z olbrzymim wydatkiem energetycznym.
      Dokonane odkrycie przynosi niezwykle ważne informacje i pokazuje, jak wielkim zagrożeniem jest wycinka drzew. Skoro w ciągu tych zaledwie 10 minut przebywania na gruncie, ginie aż 2/3 zwierząt, a fragmentacja siedlisk powoduje, że koala zmuszone są przebywać na gruncie coraz więcej czasu, dalsze niszczenie środowiska może przynieść gatunkowi zagładę.
      Teraz autorzy badań oceniają te cechy habitatów koali, które decydują, jak długo zwierzęta pozostają na drzewach. Jeśli zidentyfikujemy gatunki drzew lub warunki środowiskowe powodujące, że zwierzęta dłużej zostają na drzewach, być może będziemy w stanie tak zarządzać krajobrazem, że rzadziej będą musiały schodzić z drzew, mówi Sparkes.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W ciągu ostatnich 200 lat ludzkość wybudowała tyle zapór wodnych, że masa nagromadzonej wody doprowadziła do przesunięcia się skorupy Ziemi w stosunku do osi obrotu naszej planety. Pierwsza ze zmian została wywołana przez zapory wybudowane w Amerykach, drugą zaś spowodowało budowanie zapór w Afryce i Azji.
      Skorupa Ziemi leży na plastycznej, częściowo stopionej górnej części płaszcza planety. Może się więc względem niego przesuwać. I przesuwa się w wyniku zmiany rozkładu masy. Wówczas zmienia się też położenie punktów na skorupie, które wcześniej stanowiły bieguny planety.
      Geolodzy z Uniwersytetu Harvarda opublikowali na łamach Geophysical Research Letters artykuł, w którym ocenili wpływ 6862 zapór wodnych wybudowanych przez człowieka w latach 1835–2011 na położenie skorupy.
      Pomiędzy rokiem 1835 a 1954 w Ameryce Północnej i – w znacznie mniejszym stopniu – w Europie wybudowano tak wiele zapór wodnych, że w wyniku zmian dystrybucji masy na planecie dotychczasowy punkt wyznaczający biegun północny przesunął się 20,5 centymetra w kierunku 103. południka na wschód od Greenwich, który przechodzi przez Rosję, Mongolię, Chiny, Wietnam, Laos i Indonezję. Z tych ponad 20 centymetrów ruchu na wiek XIX przypadało jedynie 0,7 cm. Następnie w latach 1954–2011 tamy wybudowane w Afryce Wschodniej i Azji spowodowały, że doszło do przesunięcia o 57,1 cm w kierunku południka 117. zachodniego, przebiegającego przez zachodnie części Kanady i USA.
      Uwięzienie tak wielkich ilości wody w zaporach spowodowało, że w badanym okresie poziom oceanów spadł o 21 milimetrów. A raczej nie zwiększył się o te 21 mm. W badanych zaporach znajduje się około 8000 kilometrów sześciennych wody.
      W sumie, z różnych przyczyn, w latach 1835–2011 skorupa ziemska przesunęła się o około 113 centymetrów, z czego 104 centymetry przypadają na wiek XX.
      Źródło: True Polar Wander Driven by Artificial Water Impoundment: 1835–2011, https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GL115468

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przez ostatnich 540 milionów lat zmiany w sile pola magnetycznego Ziemi były skorelowane z poziomem atmosferycznego tlenu, donosi amerykańsko-brytyjski zespół naukowy. Wyniki badań sugerują, że procesy zachodzące głęboko wewnątrz naszej planety mogły mieć wpływ na organizmy żywe na powierzchni Ziemi. O swoim odkryciu uczeni poinformowali na łamach Science Advances.
      Historia ziemskiego magnetyzmu zapisana jest w skałach. Gdy rozgrzane minerały znajdujące się magmie stygną, mogą zapisać stan lokalnego pola magnetycznego. I zapis ten pozostanie w nich dopóty, dopóki nie zostaną ponownie silnie rozgrzane. Również ze skał i minerałów można odczytać poziom tlenu w atmosferze, gdyż ich skład chemiczny zależy od ilości tlenu w czasie, gdy się tworzyły. I jeden, i drugi zapis jest od dawna używany w nauce, informacje takie można znaleźć w olbrzymiej liczbę baz danych utworzonych na potrzeby badań geofizycznych i geochemicznych. Jednak, jak twierdzą autorzy nowych badań, dotychczas nikt nie wpadł na pomysł, by dokładnie porównać ze sobą oba zapisy.
      Zadania takiego podjęli się Weijia Kuang i Ravi Kopparapu z NASA Goddard Space Flight Center, Joshua Krissansen-Totton z University of Washington oraz Benjamin J. W. Mills z University of Leeds. Te dwa zestawy danych są bardzo podobne. Ziemia to jedyna znana nam planeta, która podtrzymuje złożone formy życia. Korelacja, którą znaleźliśmy, pozwoli nam lepiej zrozumieć ewolucję oraz jak jest ona powiązana z procesami zachodzącymi wewnątrz planety, mówi Weijia Kiang.
      Uczeni prześledzili zmiany siły pola magnetycznego i poziomu tlenu w atmosferze aż do czasów eksplozji kambryjskiej, w czasie której nagle pojawiło się wiele złożonych form życia. Istnienie korelacji pomiędzy siłą pola magnetycznego, a poziomem tlenu sugeruje, że oba te zjawiska mogą być reakcją na ten sam proces, na przykład na ruch kontynentów, uważa Benjamin Mills.
      Naukowcy mają nadzieję, że uda im się prześledzić jeszcze dłuższy okres historii Ziemi. Chcą sprawdzić, czy znaleziona korelacja się utrzyma. Planują też poddać analizie inne pierwiastki niezbędne do istnienia życia, by przekonać się, czy i w ich przypadku widać taki sam schemat.
      Źródło: Strong link between Earth’s oxygen level and geomagnetic dipole revealed since the last 540 million years, https://www.science.org/doi/10.1126/sciadv.adu8826

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy od dziesięcioleci zastanawiają się, co się stało z polem magnetycznym Księżyca. Na jego istnienie w przeszłości wskazują bowiem przywiezione ze Srebrnego Globu próbki skał, wskazujące, że w przeszłości były one poddane działaniu silnego pola magnetycznego. Zaś obecnie Księżyc nie posiada globalnego pola magnetycznego. Co się więc stało z polem zarejestrowanym w skałach? Naukowcy z MIT uważają, że rozwiązali tę zagadkę.
      Na łamach Science Advances opisali wyniki badań, w ramach których symulowali uderzenie w Księżyc dużego obiektu, jak asteroida. Symulacje wykazały, że w wyniku takiego zdarzenia mogła pojawić się chmura plazmy, która na krótko objęła Księżyc. Plazma taka przepłynęłaby wokół ziemskiego satelity i zgromadziła się po przeciwnej stronie do miejsca uderzania. Tam weszłaby w interakcje ze słabym polem magnetycznym Księżyca, na krótko je wzmacniając. Skały znajdujące się w miejscu nagromadzenia plazmy, zarejestrowałby ten magnetyzm.
      Taka sekwencja wydarzeń wyjaśnia obecność wysoce namagnetyzowanych skał w regionie w pobliżu bieguna południowego, po niewidocznej z Ziemi stronie Księżyca. Zaś dokładnie po przeciwnej stronie od tego obszaru znajduje się Mare Imbrium, jeden z największych kraterów uderzeniowych. Badacze uważają, że to, co go utworzyło, doprowadziło też do powstania plazmy z ich symulacji.
      Zagadkową obecność na Księżycu skał z zapisem silnego pola magnetycznego zauważono w latach 60. i 70. gdy misje Apollo przywiozły próbki. Pozostałości magnetyzmu, szczególnie po niewidocznej stronie Srebrnego Globu, potwierdziły też satelity. Jedna z hipotez mówi, że w przeszłości niewielkie jądro Księżyca generowało słabe pole magnetyczne. Jednak nie wyjaśnia ona, dlaczego w skałach, i to głównie po jednej stronie, pozostał zapis tak silnego magnetyzmu. Alternatywna hipoteza mówi o wielkim uderzeniu, w wyniku którego powstała chmura plazmy.
      W 2020 roku współautorzy obecnych badań, Rona Oran i Benjamin Weiss, sprawdzili, czy takie uderzenie mogło na tyle wzmocnić słoneczne pole magnetyczne wokół Księżyca, by pozostał zapis w skałach. Okazało się, że nie mogło, co wydawało się wykluczać ten scenariusz.
      Na potrzeby obecnych badań uczeni przyjęli inne kryteria. Założyli, że Księżyc posiadał w przeszłości dynamo magnetyczne. Biorąc pod uwagę rozmiary księżycowego jądra pole to musiało być słabe. Oszacowano je na 1 mikroteslę, czyli 50-krotnie mniej niż pole magnetyczne Ziemi. Następnie za pomocą jednego narzędzia przeprowadzili symulację uderzenia oraz powstałej plazmy, drugie zaś narzędzie pokazało, w jaki sposób taka plazma by się przemieszczała i wchodziła w interakcje z polem magnetycznym Księżyca. Wynika z nich, że doszłoby do utworzenia się i przepływu plazmy oraz wzmocnienia pola magnetycznego, ale byłby to proces bardzo szybki. Od momentu wzmocnienia pola do chwili jego powrotu do wartości początkowej minęłoby zaledwie 40 minut.
      Postało więc pytanie, czy tak krótkie oddziaływanie pola pozostawiłoby zapis w skałach. Okazuje się, że tak, za pomocą dodatkowego zjawiska. Z badań wynika, że tak duże uderzenie, jakie utworzyło Mare Imbrium, spowodowałoby powstanie fali uderzeniowej, która skupiłaby się po przeciwnej stronie i doprowadziłaby do tymczasowego zaburzenia elektronów w skałach.
      Naukowcy podejrzewają, że do zaburzenia tego doszło w momencie, gdy plazma wzmocniła pole magnetyczne. Gdy więc elektrony wróciły do stanu równowagi, ich spiny przyjęły orientację zgodną z chwilowo silnym polem magnetycznym. Jeśli rzucisz w powietrze w polu magnetycznym talię kart i każda z kart będzie wyposażone w igłę od kompasu, to gdy karty upadną na ziemię, będą zorientowane w inną stronę, niż przed wyrzuceniem. Tak właśnie działa ten proces, wyjaśnia obrazowo Weiss.
      Źródło: Impact plasma amplification of the ancient lunar dynamo

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Niewidoczna z Ziemi strona Księżyca zawiera znacznie mniej wody, niż część widoczna – donoszą chińscy naukowcy. Takie zaskakujące wnioski płyną z badań próbek bazaltu zebranych przez misję Chang'e-6. Wyniki badań, opublikowane na łamach Nature, pozwolą lepiej zrozumieć ewolucję ziemskiego satelity.
      Dostarczone na Ziemię próbki zawierały mniej niż 2 mikrogramy wody w gramie. Nigdy wcześniej nie zanotowano tak mało H2O na Księżycu. Wcześniejsze badania próbek ze strony widocznej z Ziemi zawierały nawet do 200 mikrogramów wody na gram.
      Naukowcy potrafią mierzyć zawartość wody w materiale z dokładnością do 1–1,5 części na milion. Już widoczna strona Księżyca jest niezwykle sucha. A ta niewidoczna całkowicie zaskoczyła naukowców. Nawet najbardziej suche pustynie na Ziemi zawierają około 2000 części wody na milion. To ponad tysiąckrotnie więcej, niż zawiera jej niewidoczna z Ziemi część Księżyca, mówi główny autor badań, profesor Hu Sen z Instytutu Geologii i Geofizyki Chińskiej Akademii Nauk.
      Obecnie powszechnie przyjęta hipoteza mówi, że Księżyc powstał w wyniku kolizji Ziemi z obiektem wielkości Marsa. Do zderzenia doszło 4,5 miliarda lat temu, a w wyniku niezwykle wysokich temperatur, będących skutkiem zderzenia, Księżyc utracił wodę i inne związki lotne. Debata o tym, jak dużo wody pozostało na Księżycu, trwa od dekad. Dotychczas jednak dysponowaliśmy wyłącznie próbkami ze strony widocznej z Ziemi.
      Chińska misja Chang'e-6 została wystrzelona w maju 2024 roku, wylądowała w Basenie Południowym – Aitken i w czerwcu wróciła z niemal 2 kilogramami materiału. To pierwsze w historii próbki pobrane z niewidocznej części Księżyca.
      Zespół profesora Hu wykorzystał 5 gramów materiału, na który składało się 578 ziaren o rozmiarach od 0,1 do 1,5 milimetra. Po przesianiu i dokładnej analizie okazało się, że 28% z nich stanowi bazalt. I to on właśnie został poddany badaniom.
      Ilość wody w skałach księżycowych to bardzo ważny test hipotezy o pochodzeniu Księżyca. Jeśli w skałach byłoby 200 części wody na milion lub więcej, byłoby to poważne wyzwanie dla obecnie obowiązującej hipotezy i naukowcy musieliby zaproponować nowy model powstania Księżyca, wyjaśnia profesor Hu. Wyniki badań jego zespołu stanowią więc potwierdzenie tego, co obecnie wiemy.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...