Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Za Dimorphosem utworzył się ogon długi na tysiące kilometrów. To skutek uderzenia pojazdu DART

Rekomendowane odpowiedzi

Niedługo po uderzeniu pojazdu DART w asteroidę Dimorphos mogliśmy zobaczyć fascynujące zdjęcia z tego wydarzenia. Minęło kilka dni i za niewielkim Dimorphosem utworzył się długi ogon z materiału wyrzuconego w wyniku zderzenia w przestrzeń kosmiczną.

Dimorphos ma zaledwie 170 metrów średnicy, a ciągnący się za nim ogon pyłu i skał mierzy około 10 000 kilometrów, informują astronomowie z Southern Astrophysical Research Telescope w Chile.

Zdjęcia wykonane zaraz po zderzeniu pokazywały wielką chmurę szczątków otaczających asteroidę. Obecnie chmura ta rozciągnęła się ogon. Zaszedł tam ten sam proces, w wyniku którego kometa zyskuje warkocz. Także i w przypadku Dimorphosa ogon został utworzony w wyniku oddziaływania wiatru słonecznego pchającego materiał w stronę przeciwną do położenia Słońca.

Obserwując pozostałości po kolizji astronomowie mogą badać strukturę wewnętrzną Dimorphosa, zdobywając w ten sposób bardzo ważne informacje dotyczące przyszłych misji, których celem będzie zmiana toru asteroidy. Struktura wewnętrzna to jeden z najważniejszych czynników, jakie należy brać pod uwagę przygotowując taką misję.

Gdy chmura szczątków wokół Dimorphosa zniknie, można też będzie badać jego powierzchnię. Europejska Agencja Kosmiczna chce za dwa lata wysłać misję Hera, która dokładnie przyjrzy się asteroidzie.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ten ogon nie zniknie za szybko. Nie ma on nic wspólnego z pyłem. Zmienił się ładunek elektryczny asteroidy na skutek kontaktu z ciałem o innym ładunku. To są zjawiska elektromagnetyczne i nie mają nic wspólnego z materią wyrzuconą podczas uderzenia. Asteroida zamieniła się w kometę warkocz będzie prostopadły do słońca zawsze. Tak tylko przewiduję ;)     

 

Znalazłem krótki filmik zrobiony przez teleskop CFHT - jaki jest stan gry aktualnie tam po uderzeniu. Ja tam może jednorożce widzę, ale dla mnie to są pola elektromagnetyczne i przynajmniej 2 łuki analogiczne jak obserwujemy przy wybuchach na słońcu:
 

Ja wiem, że się nie znam, ale może w słońce też cały czas walą jakieś mniejsze obiekty. No i te farmazony o fuzjach w jądrze i ich wydostających się efektach na zewnątrz będzie można w końcu wrzucić do śmieci ;)  

Edytowane przez l_smolinski

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      We wrześniu 2022 roku NASA przeprowadziła pierwszy w historii, i od razu udany, test obrony Ziemi przed asteroidami. W ramach misji DART niewielki pojazd uderzył w asteroidę Dimorphos i zmienił jej orbitę wokół asteroidy Didymos. Od tamtego czasu naukowcy badają obie asteroidy oraz skutki testu. Na łamach Nature Communications ukazało się właśnie 5 interesujących artykułów na temat Dimorphos i Didymos.
      Dzięki obrazom przekazanym przed zderzeniem przez DART i towarzyszący mu pojazd LICIACube naukowcy z Applied Physics Laboratory na Uniwersytecie Johnsa Hopkinsa mogli przeanalizować geologię obu asteroid. Olivier Barnouin i Ronald-Louis Ballouz stwierdzili, że mniejsza Dimorphos była pokryta głazami o różnych rozmiarach, natomiast Didymos jest bardziej gładka na mniejszych szerokościach i kamienista na większych, ma też więcej kraterów. Obaj autorzy uważają, że Dimorphos pochodzi od Didymos, od której się oderwała. Istnieją bowiem naturalne procesy, które przyspieszają obrót niewielkich asteroid. Mogą one być o odpowiedzialne za nadawanie im kształtu i odrywanie się materiału z ich powierzchni. Barnouin i Ballouz uważają, że powierzchnia Didymos ukształtowała się 12,5 miliona lat temu, a Dimorphos zyskała swój obecny kształt przed mniej niż 300 000 lat.
      Autorami kolejnej pracy są Maurizio Pajola z włoskiego Narodowego Instytutu Astrofizyki (INAF) i jego międzynarodowy zespół naukowy. Tutaj porównano kształt, rozmiary oraz rozkład głazów na powierzchni obu asteroid. Badacze stwierdzli, że Dimorphos formowała się etapami, prawdopodobnie z materiału pochodzącego z Didymos. Wyniki takie potwierdzają dominującą teorię, która mówi, że niektóre układy podwójne asteroid powstają w wyniku kumulowania się materiału z większej asteroidy na mniejszej, która staje się jej księżycem.
      Analizy zmęczenia cieplnego – stopniowego osłabiania i pękania materiału powodowanego przez zmiany temperatury – podjęła się Alice Lucchetti z INAF. Wraz z zespołem stwierdziła, że w wyniku takiego procesu tempo pękania powierzchni Dimorphos i oddzielania się od niej głazów może zachodzić znacznie szybciej, niż dotychczas sądzono.
      Naomi Murdoch z Uniwersytetu w Tuluzie oceniła nośność gruntu Didymos i stwierdziła, że jest ona co najmniej 1000-krotnie mniejsza niż suchego piasku czy gruntu na Księżycu. To bardzo ważny parametr, który pozwala nam zrozumieć i przewidzieć reakcję powierzchni na, na przykład, uderzenie pojazdu, który ma zmienić orbitę asteroidy.
      Autorem ostatniego z opublikowanych badań jest kolega Murdoch z uczelni, Colas Robin. Wraz z zespołem analizował on głazy znajdujące się na powierzchni Dimorphos i porównywał je z głazami z asteroid Itokawa, Ryugu oraz Bennu. Naukowcy zauważyli podobieństwa sugerujące, że wszystkie te asteroidy powstały i ewoluowały w podobny sposób.
      Wspomniane badania pozwalają nam lepiej zrozumieć pochodzenie, ewolucję i budowę Didymos i Dimorphos. Możemy też dowiedzieć się z nich, dlaczego misja DART okazała się tak wielkim sukcesem. Wiedza ta przyda się już wkrótce. Jeszcze w bieżącym roku wystartuje misja Hera Europejskiej Agencji Kosmicznej, która poleci do układu Didymos-Dimorphos. W 2026 roku wejdzie ona na orbitę asteroid i będzie je szczegółowo badała, uwzględniają przy tym wpływ misji DART.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Opublikowane właśnie na łamach Nature cztery prace naukowe dotyczące misji DART (Double Asteroid Redirection Test) potwierdzają, że ludzkość dysponuje technologiami pozwalającymi na obronę Ziemi przed zagrażającymi jej asteroidami. Nie możemy powstrzymać huraganu czy trzęsienia Ziemi. Ale wiemy, jak zapobiec uderzeniu w Ziemię asteroidy, gdy mamy na to odpowiednią ilość czasu i zasobów. Możemy w ten sposób zapobiec wielkim zniszczeniom, komentuje profesor astronomii Derek Richardson z University of Maryland (UMD), szef jednej z grup naukowych misji DART.
      Autorzy wspomnianych badań opisali szczegółowo misję, zjawiska fizyczne stojące za zderzeniem pojazdu z asteroidą, obserwacje powstałych szczątków oraz szczegóły zmian orbity Dimorphosa, księżyca asteroidy Didymos.
      Uczeni stwierdzają, że nie tylko uderzenie pojazdu DART nadało pęd Dimorphosowi. Dodatkowy pęd został nadany przez gwałtowne wyrzucenie materiału skalnego, do którego doszło w wyniku uderzenia. Proces wyrzucenia materiału w wyniku uderzenia zadziałał na Dimorphosa 3,5-krotnie bardziej efektywnie niż samo uderzenie, mówi Richardson, który brał udział w obliczeniach dotyczących przekazania pędu z DART do Dimorphosa. W wyniku tego procesu orbita asteroidy zmieniła się bardziej, niż zakładały najbardziej konserwatywne obliczenia.
      Spodziewaliśmy się, że w wyniku uderzenia orbita Dimorphosa skróci się o około 10 minut. Jednak okazało się, że uległa ona skróceniu o nieco ponad 30 minut. Innymi słowy, wyrzucony materiał zadziałał jak silnik odrzutowy, który przesunął asteroidę jeszcze dalej od jej oryginalnej orbity, dodaje Tony Farnham z UMD.
      W październiku przyszłego roku Europejska Agencja Kosmiczna chce wystrzelić misję Hera, która w latach 2026–2027 będzie badała układ Dimorphos-Didymos. Eksperci mają nadzieję, że dzięki temu dowiedzą się więcej o skutkach uderzenia DART oraz o samym układzie. Wciąż nie wiemy zbyt wiele o Dimorphosie i Didymosie, gdyż obserwowaliśmy je tylko z zewnątrz. Jaka jest ich struktura wewnętrzna? Jaka jest różnica w porowatości pomiędzy nimi? To, między innymi, pytania, na które chce poznać odpowiedzi, by lepiej określić, na ile efektywna była misja DART oraz jak tworzą się i ewoluują takie struktury, dodaje profesor Jessica Sunshine.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po dwóch tygodniach od uderzenia pojazdu DART w asteroidę Dimorphos NASA potwierdziła, że uderzenie zmieniało orbitę Dimorphosa wokół większej asteroidy, Didymos. Tym samym ludzkość po raz pierwszy celowo zmieniła trasę naturalnego obiektu w przestrzeni kosmicznej. DART (Double Asteroid Redirection Test) to jednocześnie pierwszy, i od razu udany, test technologii zmiany trasy asteroidy.
      Wszyscy mamy obowiązek chronienia naszej planety. W końcu to jedyna planeta, jaką mamy. Ta misja pokazuje, że NASA próbuje przygotować się na to, co wszechświat może skierować w naszą stronę. NASA udowodniła, że należy traktować ją poważnie jako obrońcę planety. To przełomowy dla całej ludzkości moment w technologii obrony planetarnej. Pokazuje on zaangażowanie NASA i naszych partnerów z całego świata, powiedział Bill Nelson, administrator NASA.
      Przed misją DART asteroida Dimorphos okrążała asteroidę Didymos w czasie 11 godzin i 55 minut. Celem testu było doprowadzenie do przesunięcia Dimorphosa na ciaśniejszą orbitę tak, by obiegała on Didymosa w czasie o 10 minut krótszym. Za minimum potrzebne do ogłoszenia sukcesu misji uznano skrócenie czasu obiegu o 73 sekundy. Po 2 tygodniach zbierania danych NASA poinformowała, że obecnie Dimorphos obiega Didymosa w ciągu 11 godzin i 23 minut. Czas obiegu skrócił się więc o 32 minuty. Margines niepewności wynosi plus minus 2 minuty.
      Z każdym dniem dostajemy i analizujemy nowe dane. Dzięki temu astronomowie będą mogli lepiej ocenić czy i w jaki sposób w przyszłości misje podobne do DART będą w stanie ochronić Ziemię przed asteroidą, która będzie zmierzała prosto na nas, mówi Lori Glaze, dyrektor NASA’s Planetary Science Division.
      Obecnie specjaliści skupiają się na analizie efektywności przekazania pędu przez pojazd DART asteroidzie. Trzeba pamiętać, że pojazd był miliony razy lżejszy od asteroidy. Uderzył w nią jednak z olbrzymią prędkością ponad 22 500 km/h. W wyniku uderzenia z asteroidy uniosły się tony materiału, które utworzyły za nią długi ogon ciągnący się na tysiące kilometrów. To właśnie analiza tego strumienia materiału szczątków pozwala na badanie zarówno skutków uderzenia, jak i budowy samej asteroidy.
      DART dostarczył nam fascynujących danych zarówno na temat właściwości asteroidy, jak i efektywności kinetycznego impaktora, jako metody obrony planety, stwierdziła Nancy Chabot z Johns Hopkins Applied Physics Laboratory.
      Naukowcy długo jeszcze będą badali układ Dimorphos-Didymos za pomocą naziemnych teleskopów oraz analizowali obrazy z pojazdu LICIACube, który fotografował skutki uderzenia. Za dwa lata ma wystartować misja Hera, która dokładnie zbada obie asteroidy.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...