Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Mężczyźni żyjący na zanieczyszczonych obszarach są bardziej zagrożeni łysieniem niż panowie zamieszkujący czystsze rejony. Naukowcy z Queen Mary University of London stwierdzili, że początek łysienia androgenowego typu męskiego zależy od oddziaływania czynników środowiskowych, takich jak zanieczyszczenie powietrza czy palenie (Journal of Investigative Dermatology).

Badacze sądzą, że toksyny i substancje rakotwórcze hamują wzrost włosów, blokując wytwarzanie białek, z których są one zbudowane. Łysienie ma charakter dziedziczny, ale najwyraźniej czynniki środowiskowe je nasilają. Anglicy pobierali mieszki włosowe łysiejących mężczyzn i badali je w laboratorium.

Wg profesora Mike'a Philpotta, każda z substancji zanieczyszczających powietrze, która dostaje się do krwioobiegu, skóry lub mieszków włosowych, może negatywnie oddziaływać na te ostatnie. Oznacza to, że rzucenie palenia lub zamieszkanie w rejonach z czystszym powietrzem powinno spowodować, że dana osoba będzie w mniejszym stopniu predysponowana do utraty włosów.

Naukowcy z Queen Mary University of London odnotowywali zaburzenia wzrostu włosa, spowodowane przez stres oksydacyjny. Zauważyli, że skutki działania wolnych rodników są następnie pogłębiane przez zanieczyszczenia powietrza i palenie tytoniu.

W niedalekiej przyszłości Brytyjczycy zamierzają hodować włosy w różnych warunkach środowiskowych, np. w obecności wysokich stężeń nikotyny i innych toksycznych substancji. W ten sposób określą ich potencjalny wpływ na łysienie.

Łysienie androgenowe występuje nie tylko u mężczyzn, ale i u kobiet. Dotyczy 30-40% osób obojga płci. Przeważnie zaczyna się w wieku 20-30 lat, ale u pań staje się wyraźniejsze w okresie pomenopauzalnym.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Na wnioski stanowczo za wcześnie. Najpierw trzeba wykluczyć czynniki indywidualne. Np. od pół wieku już wiadomo, że łysienie mężczyzn wynika z wysokiego poziomu androsteronów.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W sytuacji, gdy dochodzi do wykrycia uwolnienia substancji niebezpiecznych, najważniejsze jest szybkie i precyzyjne zlokalizowanie źródła uwolnienia oraz przewidzenie kierunku rozchodzenia się substancji. Używane obecnie modele dyspersyjne wymagają bardzo dużych zasobów obliczeniowych. Mogą jednak zostać zastąpione przez modele bazujące na Sztucznych Sieciach Neuronowych, SSN (ang. Artificial Neutral Networks, ANN), co pozwoli na monitorowanie skażenia w czasie rzeczywistym. W badaniu możliwości wykorzystania takich modeli uczestniczą naukowcy z Departamentu Układów Złożonych NCBJ.
      Obszar odpowiadający części centralnego Londynu, będący podstawą do przygotowania danych dla SSN, jak również wykorzystany w eksperymencie DAPPLE (skrzyżowanie Marylebone Road i Gloucester Place, 51.5218N 0.1597W)
      Od kilku lat w Centrum Analiz Zagrożeń MANHAZ prowadzone są prace nad algorytmami umożliwiającymi lokalizację źródła skażenia, w oparciu o, pochodzące z sieci detektorów, dane na temat stężeń uwolnionej substancji. Głównym zadaniem istniejących we wszystkich miastach grup reagowania kryzysowego, jest szybkie odpowiadanie na wszelkie zagrożenia dla ludzi i środowiska. Podstawowym czynnikiem decydującym o powodzeniu lub niepowodzeniu danego działania jest czas reakcji.
      Obecnie różne substancje chemiczne są używane w większości dziedzin przemysłu, co sprawia, że transport i przechowywanie materiałów toksycznych wiąże się z ciągłym ryzykiem uwolnienia ich do atmosfery i do zajścia skażenia. Dużym wyzwaniem są sytuacje, w których czujniki rozmieszczone na terenie miasta zgłaszają niezerowe stężenie niebezpiecznej substancji, której źródło nie jest znane. W takich przypadkach ważne jest, aby system był w stanie w czasie rzeczywistym oszacować najbardziej prawdopodobną lokalizację źródła zanieczyszczenia, wyłącznie w oparciu o dane o stężeniu, pochodzące z sieci czujników.
      Algorytmy, które radzą sobie z zadaniem można podzielić na dwie kategorie. Pierwszą są algorytmy opierające się na podejściu wstecznym, czyli analizie problemu zaczynając od jego ostatniego etapu, ale są one dedykowane obszarom otwartym lub problemowi w skali kontynentalnej. Drugą kategorię stanowią algorytmy, które bazują na próbkowaniu parametrów odpowiedniego modelu dyspersji (parametrów takich, jak lokalizacja źródła), aby wybrać ten, który daje najmniejszą różnicę między danymi wyjściowymi, a rzeczywistymi pomiarami stężeń, wykonywanymi przez sieć detektorów. Podejście to sprowadza się do wykorzystania algorytmów próbkowania, w celu znalezienia optymalnych parametrów modelu dyspersji, na podstawie porównania wyników modelu i detekcji zanieczyszczeń.
      Ze względu na efektywność zastosowanego algorytmu skanowania parametrów, każda rekonstrukcja wymaga wielokrotnych uruchomień modelu. Rekonstrukcja w terenie zurbanizowanym, która jest głównym przedmiotem zainteresowania badaczy, wymaga zaawansowanych modeli dyspersji, uwzględniających turbulencje pola wiatru wokół budynków. Najbardziej niezawodne i dokładne są modele obliczeniowej dynamiki płynów (ang. Computational Fluid Dynamics, CFD). Stanowią one jednak bardzo wymagające obliczeniowo wyzwanie. Musimy zdawać sobie sprawę z tego, że aby znaleźć najbardziej prawdopodobne źródło skażenia, model dyspersji trzeba uruchomić dziesiątki tysięcy razy. Oznacza to, że użyty model musi być szybki, aby można go było zastosować w systemie awaryjnym, pracującym w czasie rzeczywistym. Zakładając na przykład, że średni czas potrzebny na wykonanie samych obliczeń modelu dyspersji w terenie zurbanizowanym wynosi 10 minut, pełna rekonstrukcja z jego wykorzystaniem będzie trudna do przeprowadzenia w dopuszczalnie krótkim czasie.
      Rozwiązaniem tego problemu, nad którym pracuje dr Anna Wawrzyńczak-Szaban z Centrum Analiz Zagrożeń MANHAZ w NCBJ, przy współpracy z Instytutem Informatyki UPH w Siedlcach, jest wykorzystanie w systemie rekonstrukcji sztucznej sieci neuronowej, zamiast modelu dyspersji, w terenie zurbanizowanym. Chodzi o to, by sztuczna sieć neuronowa była skuteczna w symulacji transportu zanieczyszczeń w powietrzu, na terenie zurbanizowanym. Jeśli to się powiedzie, SSN może działać jako model dyspersji w systemie lokalizującym w czasie rzeczywistym źródło skażenia. Podstawową zaletą SSN jest bardzo krótki czas odpowiedzi – opisuje dr Anna Wawrzyńczak-Szaban. Oczywiście SSN musi być wytrenowana w stałej topologii miasta, przy użyciu rzeczywistych warunków meteorologicznych z wykorzystaniem odpowiedniego i zwalidowanego modelu dyspersji. Proces ten wymaga wielu symulacji, służących jako zestawy danych treningowych dla SSN. Proces uczenia sieci SSN jest kosztowny obliczeniowo, ale po przeszkoleniu, metoda byłaby szybkim narzędziem do szacowania stężeń punktowych dla danego źródła zanieczyszczenia.
      W pracy opublikowanej przez naukowców1) przedstawiono wyniki trenowania sieci neuronowej w oparciu o dane, uczące rozprzestrzeniania się toksyn w powietrzu w centrum Londynu, wykorzystując domenę testową eksperymentu polowego DAPPLE2). Dane uczące SSN wygenerowano za pomocą modelu dyspersji Quick Urban & Industrial Complex (QUIC). Przetestowaliśmy różne struktury SSN, czyli liczby jej warstw, neuronów i funkcji aktywacji. Wykonane testy potwierdziły, że wyszkolona SSN może w wystarczającym stopniu symulować turbulentny transport toksyn, unoszących się w powietrzu na obszarze silnie zurbanizowanym – objaśnia dr Anna Wawrzyńczak-Szaban. Ponadto pokazaliśmy, że wykorzystując SSN można skrócić czas odpowiedzi systemu rekonstrukcji. Czas wymagany, przez prezentowaną w pracy SSN, do oszacowania trzydziestominutowych stężeń gazu w 196 000 punktów sensorowych wyniósł 3 s W przypadku modelu QUIC, czas został oszacowany jako co najmniej 300 s, co daje nam 100-krotne przyspieszenie obliczeń. Biorąc to pod uwagę, czas rekonstrukcji w rzeczywistej sytuacji awaryjnej może być krótki, co skutkuje szybką lokalizacją źródła zanieczyszczenia.
      W trakcie badań okazało się, że zapewnienie trenowanej SSN pełnej informacji prowadzi czasami do pewnych wyzwań obliczeniowych. Na przykład w pojedynczej symulacji rozproszenia toksyn w powietrzu, na obszarze miejskim, nawet 90% odczytów z czujników może mieć wartość zerową. Prowadzi to do sytuacji, w której postać docelowa SSN obejmuje kilka procent wartości dodatnich i większość zer. W efekcie SSN skupia się na tym, czego jest więcej – na zerach, co sprawia, że nie dostosowuje się do szukanych elementów badanego problemu. Uwzględniając zerową wartość koncentracji w danych treningowych, musimy zmierzyć się z kilkoma pytaniami: jak uwzględnić zero? Jak przeskalować dany przedział, aby „ukryć” zera? Czy w ogóle uwzględniać zera? Czy ograniczyć ich liczbę? – podkreśla dr Wawrzyńczak-Szaban.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Koreańscy naukowcy, którzy pracują nad terapiami na łysienie androgenowe, przetestowali z dobrymi wynikami roztwory do stosowania miejscowego z ekstraktów z komórek macierzystych tkanki tłuszczowej.
      Ostatnie badania wykazały, że komórki macierzyste tkanki tłuszczowej (ang. adipose tissue-derived stem cells, ADSCs) wydzielają hormony wzrostu, które pomagają w rozwoju i namnażaniu komórek. Zgodnie z badaniami laboratoryjnymi i eksperymentalnymi, czynniki wzrostu, takie jak czynnik wzrostu hepatocytów (ang. hepatocyte growth factor, HGF), czynnik wzrostu śródbłonka naczyniowego (ang. vascular endothelial growth factor, VEGF), insulinopodobny czynnik wzrostu (ang. insulin-like growth factor, IGF) czy płytkopochodny czynnik wzrostu (ang. platelet-derived growth factor, PDGF), zwiększają rozmiary mieszka włosowego podczas rozwoju włosa.
      Autorzy artykułu z pisma Stem Cells Translational Medicine podkreślają, że łysienie androgenowe może obniżyć samoocenę i psychiczny dobrostan. Najskuteczniejsze leki wywołują, niestety, różne skutki uboczne, np. utratę libido i zaburzenia erekcji. Cały czas trwają więc poszukiwania bezpieczniejszych alternatyw.
      Ostatnie badania pokazały, że zarówno u mężczyzn, jak i u kobiet z łysieniem ADSCs sprzyjają wzrostowi włosów. Dotąd jednak nikt nie przeprowadził randomizowanych badań z grupą kontrolną, które eksplorowałyby skuteczność i bezpieczeństwo ekstraktów składników komórek macierzystych tkanki tłuszczowej [ADSC-CE, od ang. adipose-derived stem cell constituent extract] w ludzkim łysieniu androgenowym. Chcieliśmy ocenić efektywność i tolerowalność ADSC-CE u pacjentów z łysieniem androgenowym w średnim wieku - opowiada dr Sang Yeoup Lee z Pusan National University Yangsan Hospital w Korei Południowej.
      Uczeni zebrali grupę 38 pacjentów (29 mężczyzn i 9 kobiet) z łysieniem androgenowym. Połowę wylosowano do grupy interwencyjnej stosującej miejscowo roztwór ADSC-CE, a połowę do grupy placebo.
      Komórki macierzyste izolowano od zdrowych dawców, którzy zgodzili się na wykorzystanie ich tkanki tłuszczowej pozostałej po zabiegu liposukcji. Dawcy mieli 20 bądź więcej lat, a wskaźnik masy ich ciała (BMI) wynosił od 25 do 29,9. Pozyskane ADSCs hodowano na pożywce bez surowicy. Komórki zawieszono w wodzie destylowanej, a następnie błonę komórkową zniszczono za pomocą fali ultradźwiękowej o niskiej częstotliwości. By upewnić się, że zaszła całkowita liza, próbki obserwowano pod mikroskopem. By usunąć resztki błony, całość odwirowano. Materiał dla grupy interwencyjnej zawierał 1% ADSC-CE w wodzie destylowanej, a grupa kontrolna dostała czystą wodę destylowaną. Każdy z ochotników otrzymał 130-ml buteleczkę. Bezbarwnym, bezwonnym środkiem należało smarować skórę głowy 2 razy dziennie przez 16 tygodni. Badanych poinstruowano, by delikatnie wmasowywać w skórę ok. 2 ml preparatu.
      Pod koniec eksperymentu w grupie interwencyjnej stwierdzano znaczący wzrost liczby włosów i średnicy mieszków włosowych - podkreśla dr Young Jin Tak.
      Nasze wyniki sugerują, że aplikacja roztworu ADSC-CE ma olbrzymi potencjał jako alternatywna strategia terapeutyczna dla odrostu włosów u pacjentów z łysieniem androgenowym. Przy zachowaniu odpowiedniego [poziomu] bezpieczeństwa obserwowano zarówno wzrost gęstości włosów, jak i ich grubości. Kolejnym krokiem będzie przeprowadzenie podobnych studiów na dużej i zróżnicowanej populacji. W ten sposób zweryfikujemy korzystny wpływ ADSC-CE na wzrost włosów i wychwycimy mechanizmy działania preparatu - dodaje dr Lee.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dotąd wiadomo było, jak wygląda ciąg reakcji uruchamianych przez nikotynę do momentu jej związania z receptorami nikotynowymi na powierzchni neuronów. Słabiej poznano za to proces zachodzący po dostaniu się alkaloidu do komórki. Najnowsze eksperymenty ze specjalnym bioczujnikiem uchyliły jednak rąbka tajemnicy. Naukowcy mają nadzieję, że dzięki temu uda się lepiej zrozumieć naturę uzależnienia od nikotyny.
      Zespół prof. Henry'ego Lestera z Caltechu wyjaśnia, że siateczka śródplazmatyczna (ER) pełni funkcję fabryki i magazynu. To tu powstają różne białka, które są następnie pakowane do pęcherzyków transportowych. Należą do nich m.in. acetylocholinergiczne receptory nikotynowe (NACh-R), które ostatecznie trafiają na powierzchnię komórki.
      Gdy nikotyna dostanie się do organizmu, za pośrednictwem krwiobiegu dociera do mózgu i neuronów z NACh-R. Związanie z receptorami powoduje uwalnianie dopaminy (wzrost stężenia dopaminy w układzie mezolimbicznym jest odpowiedzialny za uczucie szczęścia).
      O wiele mniej wiadomo o tym, co dzieje się po dostaniu nikotyny do komórek. Na razie Lester ustalił, że niektóre receptory NACh-R zostają w siateczce śródplazmatycznej i także mogą się wiązać z nikotyną.
      By dokładnie zbadać oddziaływania alkaloidu w komórce, Amerykanie stworzyli bioczujnik iNicSnFRs, złożony ze specjalnego białka, które może się otwierać i zamykać jak pułapka muchołówki oraz inaktywowanego fluorescencyjnego białka.
      Sensor ma się "zamykać" na nikotynie. Proces ten aktywuje fluorescencyjne białko, które zaczyna świecić. Na tej podstawie wiadomo, gdzie cząsteczki nikotyny występują i ile ich jest.
      Naukowcy mogą umieszczać bioczujniki w konkretnych miejscach. Tym razem zlokalizowali je w siateczce śródplazmatycznej i na powierzchni komórek.
      Zespół z Caltechu nagrywał filmy z komórkami z bioczujnikami. Autorzy artykułu z Journal of General Physiology prowadzili eksperymenty na 4 liniach komórkowych (HeLa, SH-SY5Y, N2a i HEK293), a także na mysich neuronach hipokampa i ludzkich neuronach dopaminergicznych uzyskanych z komórek macierzystych. Okazało się, że w przypadku wszystkich nikotyna docierała do retikulum endoplazmatycznego w ciągu 10 sekund od pojawienia się na zewnątrz komórki. Poziom nikotyny w ER to ok. 2-krotność stężenia zewnątrzkomórkowego.
      Stwierdzono także, że nikotyna odgrywa rolę stabilizującego farmakologicznego szaperonu dla niektórych podtypów NACh-R, co oznacza, że ułatwia ich właściwe fałdowanie. Dzieje się tak nawet przy stężeniach ~10 nM, a u typowego palacza takie wartości mogą się utrzymywać w ciągu dnia przez 12 godzin. Zwiększa się aktywacja szlaku prowadzącego na zewnątrz, co z kolei sprawia, że neurony stają się wrażliwsze na nikotynę. Można więc powiedzieć, że im więcej ktoś pali, tym szybciej i łatwiej nikotyna na niego zadziała (wzrasta nagradzająca wartość palenia).
      Na razie badania prowadzono w laboratorium na izolowanych komórkach, ale naukowcy już myślą o sprawdzeniu, czy wewnątrzkomórkowe poczynania nikotyny są takie same w neuronach żywych myszy.
      Co ważne, rozpoczęły się już prace nad biosensorami innych substancji psychoaktywnych, w tym opiodów i antydepresantów.
       


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zarówno kobiety, jak i mężczyźni wolą polityków z niższymi głosami. Wyniki uzyskane przez amerykańskich naukowców sugerują, że na wybór konkretnego kandydata wpływa nie tylko sympatyzowanie z jakąś partią/ideologią, ale i czynniki natury biologicznej.
      Często błyskawicznie oceniamy kandydatów, bez pełnej wiedzy o ich programie czy pozycji. Najnowsze ustalenia mogą pomóc wyjaśnić czemu - uważa Rindy Anderson, biolog z Duke University. To jasne, że nasz głos przekazuje więcej informacji niż słowa, które wypowiadamy. Świadomość ta może pomóc w zrozumieniu czynników wpływających na nasze kontakty społeczne, a także w dociekaniu, czemu na wysokie stanowiska polityczne wybiera się mniej kobiet.
      Badając preferencje w zakresie wysokości głosu kandydatów, Anderson, Susan Peters (także z Duke University) oraz Casey Klofstad z Uniwersytetu w Miami nagrywali kobiety i mężczyzn wypowiadających zdanie "Zachęcam do głosowania na mnie w czasie listopadowych wyborów" (wtedy w USA mają się odbyć wybory prezydenckie). Później nagrania modyfikowano, uzyskując wersje wypowiadane wysokim i niskim głosem.
      Głosy żeńskie odtworzono 37 mężczyznom i 46 kobietom z Uniwersytetu w Miami, a głosy męskie 49 mężczyznom i 40 kobietom z Duke University. Okazało się, że zarówno kobiety, jak i mężczyźni wybierali kandydatów z niższym głosem (bez względu na płeć polityka).
      W drugim eksperymencie nagrania prezentowano trzem grupom 35 mężczyzn i 35 kobiet. Proszono o wybranie kandydata, który wydawał się silniejszy, bardziej kompetentny i godny zaufania. Zarówno kobiety, jak i mężczyźni przypisywali niższym kobiecym głosom wszystkie 3 cechy. Tylko mężczyźni postrzegali zaś niskie męskie głosy jako świadczące o większej sile i kompetencji. Anderson podejrzewa, że mężczyźni mogą być wyczuleni na wysokość głosu pozostałych przedstawicieli własnej płci, bo to pozwala wnioskować o ich tendencji do współzawodnictwa i agresji społecznej (na zachowanie i głos wpływa w końcu poziom testosteronu). Kobiety oceniają te cechy na podstawie innych wskazówek.
      Ponieważ na razie badania miały charakter laboratoryjny, Anderson przestrzega przed rozpatrywaniem wyników w zbyt szerokim kontekście. Rzeczywiście kobiety mają wyższe głosy od mężczyzn, ale głos to tylko jeden z czynników, które wpływają na niedoreprezentowanie kobiet wśród liderów. Zespół zamierza przeanalizować pod kątem głosu tegoroczne wybory prezydenckie w USA.
    • przez KopalniaWiedzy.pl
      Lekkie odwodnienie to sytuacja, gdy zawartość wody w tkankach spada o 1,5%. U obu płci pojawiają się wtedy zmęczenie, napięcie i lęk, jednak okazuje się, że kobiety doświadczają silniejszych zmian nastroju. Co ciekawe, choć kobiety czują się gorzej, to mężczyźni mają większe problemy poznawcze, w porównaniu do swej zwykłej formy (Journal of Nutrition and the British Journal of Nutrition).
      W badaniach zespołu z University of Connecticut uwzględniono grupy kobiet i mężczyzn tuż po dwudziestce, którzy ani nie uprawiali wyczynowo sportu, ani nie prowadzili siedzącego trybu życia. Do odwodnienia doprowadzano w wyniku ćwiczeń na bieżni (wieczorem dzień przed eksperymentem wszyscy byli nawodnieni). Po wysiłku ochotników badano za pomocą testów do oceny czujności, pamięci, rozumowania, czasu reakcji, uwagi oraz uczenia. Później porównywano wyniki uzyskane w stanie odwodnienia i nawodnienia.
      W grupie kobiet łagodne odwodnienie wywołało ból głowy, zmęczenie i problemy z koncentracją. Choć same ochotniczki twierdziły, że zadania wydawały im się trudniejsze, ich funkcjonowanie poznawcze praktycznie się nie zmieniło.
      U mężczyzn łagodne odwodnienie utrudniało funkcjonowanie poznawcze, zwłaszcza w zakresie pamięci roboczej i czujności. Panowie także byli zmęczeni, niespokojni i spięci, ale w zdecydowanie mniejszym stopniu niż rówieśnice.
      Harris Liberman, jeden ze współautorów studium, uważa, że niekorzystne zmiany nastroju mogą ograniczać motywację konieczną do angażowania nawet w umiarkowanie intensywne ćwiczenia dotleniające.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...