Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Czerwony nadolbrzym Betelgeza „leczy rany” po gigantycznym wyrzucie masy
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Solar Orbiter, misja Europejskiej Agencji Kosmicznej, wyróżniła dwa rodzaje wysokoenergetycznych cząstek wystrzeliwanych ze Słońca i wyśledziła źródła obu rodzajów. O ile oba typy były znane już wcześniej, teraz dzięki misji ESA wiemy, skąd się one biorą i jak powstają. W ten sposób dodatkowo poszerzyliśmy naszą wiedzę o Słońcu, największym akceleratorze cząstek w Układzie Słonecznym, który decyduje o tym, co dzieje się na Ziemi i wokół niej.
Wysokoenergetyczne elektrony pochodzące ze Słońca mają dwa źródła. Jednym są rozbłyski słoneczne, czyli eksplozje mające miejsce na niewielkich obszarach, a drugim źródłem są koronalne wyrzuty masy, czyli duże erupcje. Widzimy wyraźną różnicę pomiędzy gwałtownymi impulsami, gdy wysokoenergetyczne elektrony są wyrzucane z powierzchni Słońca oraz stopniowo rozwijającymi się erupcjami, w wyniku których przez dłuższy czas wyrzucane są różnorodne cząstki, mówi główny autor badań Alexander Warmuth z Instytutu Astrofizyki im. Leibniza w Poczdamie. Teraz mogliśmy podlecieć na tyle blisko Słońca, by zbadać te cząstki na wczesnym etapie powstawania i dokładnie określić czas i miejsce ich narodzin na Słońcu, dodaje uczony.
W czasie badań wykorzystano 8 z 10 instrumentów naukowych Solar Orbitera, a dane zbierano od listopada 2020 do grudnia 2022. Pojazd mierzył cząstki in situ, przelatując przez ich strumienie i jednocześnie obserwując to, co dzieje się na Słońcu oraz zbierając informacje na temat obszaru pomiędzy Słońcem a sobą samym. Orbiter badał cząstki w różnych odległościach od Słońca, co pozwoliło odpowiedzieć na wiele pytań ich dotyczących. Często bowiem, gdy obserwujemy rozbłysk czy koronalny wyrzut masy mija bardzo dużo czasu, zanim wykryjemy wysokoenergetyczne elektrony. Okazuje się, że częściowo dzieje się tak przez sposób ich podróżowania w przestrzeni. Może być to spowodowane opóźnieniem w wystrzeleniu elektronów, ale również opóźnieniem w ich wykryciu. Elektrony na swojej drodze napotykają różne turbulencje, zostają rozproszone itp. itd. A tego typu przeszkody mnożą się, im dalej jesteśmy od Słońca. Więc nie wykrywamy elektronów natychmiast, dodaje Laura Rodríguez-García.
Musimy pamiętać, że przestrzeń w Układzie Słonecznym nie jest pusta. Wypełniona jest wiatrem słonecznym, który niesie ze sobą pole magnetyczne Słońca. Decyduje on, w jaki sposób mogą rozprzestrzeniać się elektrony. Nie podróżują one swobodnie, o tym, jak się przemieszczają decyduje wiatr słoneczny i pole magnetyczne.
Zdobyta właśnie wiedza może okazać się w przyszłości ważna dla bezpieczeństwa na Ziemi i wokół niej. Elektrony związane z koronalnymi wyrzutami masy są zagrożeniem dla satelitów, pojazdów kosmicznych i astronautów. Lepsze zrozumienie tych cząstek pozwoli w przyszłości na stosowanie lepszych metod ochrony.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na EK Draconis zauważono gigantyczny koronalny wyrzut masy. Był on 10-krotnie potężniejszy niż tego typu zjawiska zaobserwowane na Słońcu. Może stanowić dla nas poważne ostrzeżenie, gdyż EK Draconis to gwiazda podobna do Słońca. Silny koronalny wyrzut masyw kierunku Ziemi mógłby zakończyć się katastrofą dla naszej coraz bardziej stechnicyzowanej cywilizacji. Scenariusz takiej katastrofy opisywaliśmy już wcześniej.
Koronalny wyrzut masy może mieć poważne skutki dla Ziemi i ludzi, mówi główny autor badań, Yuta Notsu z University of Colorado, Boulder. A teraz okazuje się, że takie zjawiska mogą być znacznie silniejsze niż sądziliśmy.
Notsu i jego koledzy obserwowali EK Draconis, gwiazdę będącą młodszą wersją Słońca. Znajduje się ona 111 lat świetlnych od Ziemi, w Gwiazdozbiorze Smoka. W kwietniu ubiegłego roku zauważyli olbrzymi koronalny wyrzut masy. Taki wyrzut może – przynajmniej teoretycznie – mieć również miejsce na Słońcu, mówi uczony. Nasze badania pozwolą nam lepiej zrozumieć, jak przez miliardy lat koronalne wyrzuty masy wpływały na Ziemię czy Marsa".
Koronalne wyrzuty masy to olbrzymie obłoki plazmy wyrzucane w przestrzeń międzyplanetarną. Są jednym z najważniejszych czynników kształtujących pogodę kosmiczną. Plazma pędzi z prędkością sięgającą tysięcy kilometrów na sekundę, a gdy dotrze do Ziemi zaburza magnetosferę, może uszkadzać satelity i sieci energetyczne. Koronalne wyrzuty masy często pojawiają się po rozbłyskach słonecznych.
W 2019 roku Notsu i jego zespół opublikowali pracę naukową, w której poinformowali o zaobserwowaniu rozbłysków nawet setki razy potężniejszych niż te obserwowane na Słońcu. Wówczas zaczęli się zastanawiać, czy takim rozbłyskom mogą towarzyszyć równie silne koronalne wyrzuty masy. Obserwowane przez nas superrozbłyski były znacznie silniejsze niż znane nam ze Słońca. Podejrzewaliśmy więc, że mogą wiązać się ze znacznie potężniejszymi koronalnymi wyrzutami masy. Jednak do niedawna było to tylko przypuszczenie, przyznaje uczony.
Żeby sprawdzić to przypuszczenie naukowcy zajęli się obserwacją DK Draconis. To jakby młodsza wersja Słońca. Gwiazda ta liczy sobie zaledwie 100 milionów lat. Wygląda tak, jak Słońce przed 4,5 miliardami lat.
Uczeni obserwowali gwiazdę za pomocą Transiting Exoplanet Survey Satellite NASA i SEIMEI Telescope należącego do Uniwersytetu w Kioto. Piątego kwietnia ubiegłego roku zaobserwowali olbrzymi rozbłysk na DK Draconis. A około 30 minut później zauważyli początek koronalnego wyrzutu masy. Mogli obserwować tylko moment jego narodzin, ale już on robił wrażenie. Wyrzut był olbrzymi, a uwolniony z powierzchni gwiazdy materiał poruszał się z prędkością około 1,5 miliona kilometrów na godzinę.
Notsu uspokaja jednak, że tego typu zjawiska zdarzają się niezwykle rzadko, a i tak znacznie częściej mają miejsce w przypadku gwiazd młodych. Ich badanie może nam sporo powiedzieć o historii Ziemi i Marsa. Koronalne wyrzuty masy mogły bowiem zadecydować o losie obu planet u zarania Układu Słonecznego.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy od dawna wiedzą, że duży koronalny wyrzut masy na Słońcu może poważnie uszkodzić sieci energetyczne, doprowadzając do braków prądu, wody, paliwa czy towarów w sklepach. Znacznie mniej uwagi przywiązują jednak do tego, jak takie wydarzenie wpłynie na internet. Jak się okazuje, skutki mogą być równie katastrofalne, a najsłabszym elementem systemu są podmorskie kable łączące kraje i kontynenty.
Przed kilkunastu laty amerykańskie Narodowe Akademie Nauk przygotowały na zlecenie NASA raport dotyczący skutków wielkiego koronalnego wyrzutu masy, który zostałyby skierowany w stronę Ziemi. Takie wydarzenie mogłoby pozbawić ludzi wody, towarów w sklepach, transportu publicznego i prywatnego, uniemożliwić działanie szpitali i przedsiębiorstw, doprowadzić do wyłączenia elektrowni. Jak wówczas informowali autorzy raportu same tylko Stany Zjednoczone poniosłyby w ciągu pierwszego roku straty rzędu 2 bilionów dolarów. Przywrócenie stanu sprzed katastrofy potrwałoby 4-10 lat.
Katastrofy naturalne zwykle są najbardziej odczuwane przez najbiedniejsze państwa. Wielki koronalny wyrzut masy jest zaś tym bardziej niebezpieczny, im bardziej rozwinięte państwo i im bardziej uzależnione jest od sieci energetycznej i – jak się okazuje – internetu.
Koronalne wyrzuty masy to gigantyczne obłoki plazmy, które co jakiś czas są wyrzucane przez Słońce w przestrzeń kosmiczną. Mają one masę miliardów ton i posiadają silne pole magnetyczne, które może uszkadzać satelity, sieci energetyczne i zakłócać łączność radiową.
Ludzkość nie ma zbyt wielu doświadczeń z tego typu wydarzeniami. W marcu 1989 roku w Kanadzie 6 milionów osób było przez 9 godzin pozbawionych prądu właśnie z powodu burzy na Słońcu. Jednak wiemy, że wyrzuty koronalne mogą być znacznie silniejsze. Najpotężniejsze znane nam tego typu zjawisko to wydarzenie Carringtona z 1859 roku. Kilkanaście godzin po tym, jak brytyjski astronom Richard Carrington zaobserwował dwa potężne rozbłyski na Słońcu, Ziemię zalało światło zórz polarnych.
Przestały działać telegrafy, a Ameryce Północnej, gdzie była noc, ludzie mogli bez przeszkód czytać gazety, doszło do kilku pożarów drewnianych budynków telegrafów, igły kompasów poruszały się w sposób niekontrolowany, a zorze polarne widać było nawet w Kolumbii. Jednak wydarzenie to miało miejsce na długo przed rozwojem sieci energetycznych. Obecnie tak silny rozbłysk miałby katastrofalne skutki.
Podczas zakończonej niedawno konferencji SIGCOMM 2021 profesor Sangeetha Abdu Jyothi z University of California Irvine, wystąpiła z odczytem Solar Superstorms. Planning for an Internet Apocalypse. Przedstawiła w nim wyniki swoich badań nad wpływem wielkiej chmury szybko poruszających się namagnetyzowanych cząstek słonecznych na światowy internet.
Z badań wynika, że nawet gdyby stosunkowo szybko udało się przywrócić zasilanie, to problemów z internetem doświadczalibyśmy przez długi czas. Dobra wiadomość jest taka, że lokalna i regionalna infrastruktura internetowa nie powinna zbytnio ucierpieć. Światłowody same w sobie są odporne na tego typu wydarzenia. Znacznie gorzej byłoby z przesyłaniem danych w skali całego globu.
Największe zagrożenie czyha na kable podmorskie. Przesyłają one dane przez tysiące kilometrów, a co 50–150 kilometrów są na nich zainstalowane wzmacniacze. I o ile sam podmorski kabel nie byłby narażony, to wielka burza słoneczna mogłaby uszkodzić te wzmacniacze. Gdy zaś doszłoby do uszkodzenia odpowiednich ich liczby, przesyłanie danych stałoby się niemożliwe. Co więcej, kable podmorskie są uziemiane co setki lub tysiące kilometrów, a to stwarza dodatkowe zagrożenie dla wzmacniaczy. Jakby jeszcze tego było mało, budowa geologiczna morskiego dna jest bardzo różna, i w niektórych miejscach wpływ burzy słonecznej na kable będzie silniejszy niż w innych. Zapomnijmy też o przesyłaniu danych za pomocą satelitów. Wielki rozbłysk na Słońcu może je uszkodzić.
Obecnie nie mamy modeli pokazujących dokładnie, co mogłoby się stać. Lepiej rozumiemy wpływ koronalnego wyrzutu masy na sieci energetyczne. Jednak one znajdują się na lądach. Jeszcze trudniej jest przewidywać, co może stać się na dnie morskim, mówi Abdu Jyothi.
Koronalne wyrzuty masy są bardziej niebezpieczne dla wyższych szerokości geograficznych, tych bliższych biegunom. Zatem Polska czy USA ucierpią bardziej niż położony w pobliżu równika Singapur. A Europa i Ameryka Północna będą miały większe problemy z internetem niż Azja.
Internet zaprojektowano tak, by był odporny na zakłócenia. Gdy dojdzie do awarii w jednym miejscu, dane są automatycznie kierowane inną drogą, by omijać miejsce awarii. Ale jednoczesna awaria w kilku czy kilkunastu kluczowych punktach zdestabilizuje całą sieć. Wszystko zależy od tego, gdzie do niej dojdzie. Wspomniany tutaj Singapur jest hubem dla wielu azjatyckich podmorskich kabli telekomunikacyjnych. Jako, że położony jest blisko równika, istnieje tam mniejsze ryzyko awarii w razie wielkiej burzy słonecznej. Ponadto wiele kabli w regionie jest dość krótkich, rozciągają się z huba w różnych kierunkach. Tymczasem kable przekraczające Atlantyk czy Pacyfik są bardzo długie i położone na wyższych, bardziej narażonych na zakłócenia, szerokościach geograficznych.
Niestety, podmorskie kable rzadko są zabezpieczane przed skutkami wielkich zaburzeń geomagnetycznych, takich jak burze słoneczne. Nie mamy doświadczenia z takimi wydarzeniami, a właściciele infrastruktury priorytetowo traktują cyberataki czy katastrofy naturalne mające swój początek na Ziemi i to przed nimi zabezpieczają swoje sieci.
Abdu Jyothi zauważa jednak, że o ile wielkie koronalne wyrzuty masy są niezwykle rzadkie, a jeszcze rzadziej są one skierowane w stronę Ziemi, to stawka jest tutaj bardzo duża. Długotrwałe zaburzenie łączności w skali globalnej miałoby negatywny wpływ niemal na każdy dział gospodarki i niemal każdego człowieka na Ziemi.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Betelgeza, najbliższy nam czerwony nadolbrzym, to dziesiąta najjaśniejsza gwiazda na niebie. W bliskiej podczerwieni jest zaś gwiazdą najjaśniejszą. Gdyby znajdowała się w centrum Układu Słonecznego, orbita Jowisza znalazłaby się w jej wnętrzu. W latach 2019–2020 Betelgeza zaczęła przygasać i pojawiły się spekulacje, że może eksplodować. Tymczasem gwiazda wróciła do dawnej jasności, a teraz udało się rozwiązać zagadkę jej tajemniczego zachowania.
Jednym z wyjaśnień nietypowego zachowania gwiazdy była hipoteza, że przesłania ją orbitująca chmura pyłu. Drugie z wyjaśnień brzmiało, że na jej powierzchni uformował się chłodny obszar.
Wyjaśnienie dotyczące pyłu zdobyło większą popularność, jednak w danych instrumentu SPHERE umieszczonego na Very Large Telescope w Chile nie widać, by utrata jasności była okresowa, a tak by się działo, gdybyśmy mieli do czynienia z pyłem krążącym wokół gwiazdy.
Naukowcy z Observatoire de Paris oraz Uniwersytetu Katolickiego z Leuven, pracujący pod kierunkiem Miguela Montargesa, uważają, że oba wyjaśnienia są prawdziwe i łączą się ze sobą. SPHERE wykazał bowiem, że spadek jasności dotyczył fragmentu półkuli południowej gwiazdy. Był on 10-krotnie ciemniejszy niż reszta Betelgezy. Sądzimy, że w związku z pojawieniem się tego zimnego obszaru doszło do szybkiej koncentracji pyłu, co spowodowało głęboki spadek jasności gwiazdy z naszego punktu widzenia, mówi Montarges.
Takie wnioski wyciągnięto na podstawie kilku wcześniejszych prac. W 2020 roku naukowcy z University of Colorado, prowadzeni przez Grahama Harpera, zaobserwowali w atmosferze gwiazdy emisję z tlenku tytanu. Odkryli, że uformował się chłodny obszar. Chłodne gwiazdy, jak Betelgeza, doświadczają silnej konwekcji, a komórki konwekcyjne mają rozmiar olbrzymich planet. Pojawiają się na powierzchni i ponownie toną. Chłodny obszar mógł być więc nietypową duża komórką konwekcyjną. W tym samym roku inny zespół amerykańskich uczonych zauważył, że temperatura Betelgezy nie spadła poniżej 3600 kelwinów, była więc zbyt wysoka, by wyjaśnić tak dużą zmianę jasności.
Zespół Montargesa połączył te informacje z innymi badaniami i zaproponował całościowe wyjaśnienie. Zdaniem naukowców chłody obszar, ufomowany w wyniku naturalnego pulsowania gwiazdy, doprowadził do zmniejszenia promieniowania wzbudzającego chmurę gazu, która została wyemitowana przez gwiazdę, ale nie była na jej orbicie. Pochodzenie tego gazu nie jest jasne, ale to on może być odpowiedzialny za asymetrię gwiazdy zaobserwowaną w 2015 roku. Przypuszczamy, że gaz ten został wyrzucony przez silniejszą niż zwykle komórkę konwekcyjną, mówi Montarges. Gdy uformowała się kolejna wielka komórka konwekcyjna o niższej temperaturze, doprowadziło to do spadku temperatury gazu i jego kondensacji. Gaz ten przysłonił nam Betelgezę, przez co dla nas jej jasność jeszcze bardziej spadła.
O ile wiadomo, jest to pierwszy przypadek zaobserwowania i opisania takiego zjawiska. My natomiast opisywaliśmy Betelgezę już kilkukrotnie. Informowaliśmy, że czerwony nadolbrzym idzie na czołowe zderzenie, że na Betelgezie istnieją tajemnicze gorące punkty oraz że gwiazda obraca się zbyt szybko.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Czerwony nadolbrzym Betelgeza, jedna z najjaśniejszych gwiazd na niebie, przygasła w ciągu ostatnich tygodni bardziej niż przez ostatnie sto lat. Podekscytowani astronomowie z całego świata zastanawiają się co to oznacza. Nie można wykluczyć, że gwiazda wybuchnie i zamieni się w supernową. Nadolbrzymy wciąż kryją wiele zagadek, a naukowcy mają nadzieję, że dzięki obserwowanemu właśnie procesowi, dowiedzą się więcej o takich gwiazdach.
Astronomowie od ponad wieku obserwują, jak Betelgeza raz przygasa, raz robi się jaśniejsza. Materia z gwiazdy wędruje ku jej powierzchni i ponownie tonie w jej wnętrzu, powodując, że powierzchnia jest raz chłodniejsza, raz cieplejsza. Stąd właśnie zmienna jasność gwiazdy.
Richard Wasatonic, astronom z Villanova Univrsity w Pennsylvanii od 25 lat dokonuje pomiarów jasności Betelgezy za pomocą niewielkiego prywatnego teleskopu. W październiku wraz ze swoim kolegą Edwardem Guinanem i astronomem-amatorem Thomasem Calderwoodem zauważyli, że Betelgeza ponownie przygasa. Do grudnia stała się ciemniejsza niż w ciągu ostatnich 25 lat.
Na łamach witryny The Astronomer's Telegram poinformowali o tym innych astronomów. Każdej nocy była ciemniejsza niż nocy poprzedniej, mówi Guinan. Obserwujący spodziewali się, że wkrótce gwiazda przestanie zmniejszać swoją jasność. Jednak tak się nie stało. Dnia 23 grudnia zaktualizowali swój wpis, stwierdzając, że Betelgeza nadal przygasa i jest już ciemniejsza niż była w ciągu ostatni 100 lat, czyli w całym okresie, w którym nauka mierzy jasność gwiazd za pomocą urządzeń, a nie ocenia ją „na oko”.
Betelgeza, która jest zwykle 6. lub 7. najjaśniejszą gwiazdą na niebie, do połowy grudnia bieżącego roku stała się 21. najjaśniejszą gwiazdą nieboskłonu.
Nic więc dziwnego, że pojawiły się głosy, iż możemy być świadkami końca Betelgezy. Na podstawie obliczeń masy astronomowie stwierdzili, że Betelgeza stanie się supernową w wieku około 9 milionów lat. Właśnie tyle mniej więcej lat liczy sobie gwiazda. Już jakiś czas temu obliczano, że Betelgeza stanie się supernową w ciągu najbliższych 100 000 lat. Jeśli nadolbrzym wybuchnie stanie się dla nas tak jasny, jak połowa jasności Księżyca w pełni. Przez wiele miesięcy będziemy mogli obserwować taką supernową nawet za dnia. Nie powinniśmy się jednak obawiać o nasze bezpieczeństwo, gdyż gwiazda znajduje się w odległości około 420 – 640 lat świetlnych od Ziemi.
Niejednokrotnie mieli dotychczas okazję badać supernowe. Nigdy jednak nie udało się obserwować procesów zachodzących zanim gwiazda stanie się supernową. Stąd też nie wiadomo, czy obecne przygasanie gwiazdy oznacza jej rychły koniec.
Betelgeza już kilkukrotnie zwracała na siebie naszą uwagę. Przed 10 laty informowaliśmy, że gwiazda mocno się skurczyła, ale jej jasność nie spadła. Po kilku latach astronomowie odkryli tajemniczą wielką ścianę pyłu, w kierunku której zmierza Betelgeza, a z którą w przyszłości się zderzy. Niedługo później na Betelgezie zaobserwowanie istnienie gorących punktów, a trzy lata temu okazało się, że gwiazda obraca się szybciej, niż powinna.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.