Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Chińczycy odkryli najpotężniejsze pole magnetyczne we wszechświecie

Recommended Posts

Gwiazdy neutronowe są źródłem najpotężniejszych pól magnetycznych we wszechświecie. Naukowcy z Chińskiej Akademii Nauk donieśli właśnie, że satelita Insight-HXMT zaobserwował gwiazdę o najpotężniejszej indukcji magnetycznej na powierzchni. Z pomiarów wynika, że indukcja na powierzchni gwiazdy znajdującej się w układzie podwójnym Swift J0243.6+6124 wynosi gigantyczne 1,6 miliarda tesli. Dotychczasowy rekord, zmierzony w 2020 roku, wynosił 1 miliard tesli.

O tym, o jak olbrzymich wartościach mówimy niech świadczy fakt, że indukcja potężnych magnesów wykorzystywanych w akceleratorach cząstek czy reaktorach fuzyjnych wynosi kilkanaście tesli. A indukcja pola magnetycznego na powierzchni Ziemi to... 0,000065 tesli. Indukcja magnetyczna Swift J0243.6+6124 jest więc 24 biliony razy większa.

Wspomniany układ podwójny składa się z gwiazdy neutronowej oraz jej towarzysza. Potężna grawitacja gwiazdy neutronowej wyciąga z jej towarzysza gaz, który opada na gwiazdę neutronową, tworząc wokół dysk akrecyjny. Plazma z dysku akrecyjnego opada wzdłuż linii pola magnetycznego na powierzchnię gwiazdy, podążając do biegunów magnetycznych, gdzie wywołuje silne promieniowanie rentgenowskie emitowane w wąskich wiązkach wzdłuż biegunów magnetycznych. Jako że gwiazda się obraca, obserwator widzi pulsujące promieniowanie magnetyczne, stąd taki układ nazywa się pulsarem rentgenowskim.

Z wielu badań wiemy, że energia absorpcji linii promieniowania rentgenowskiego z takiego pulsara odpowiada indukcji magnetycznej na powierzchni gwiazdy neutronowej. Dzięki temu możemy mierzyć tę indukcję badając promieniowanie emitowane przez gwiazdę.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Astronomowie z University of Berkeley poinformowali, że odkryta w 2017 roku gwiazda neutronowa jest nie tylko jednym z najszybciej obracających się pulsarów w Drodze Mlecznej. Pochłonęła ona niemal całą masę towarzyszącej jej gwiazdy, stając się najbardziej masywną ze wszystkich znanych nam gwiazd neutronowych.
      Pulsar PSR J0952-0607 obraca się 707 razy na sekundę, a jego masa wynosi aż 2,35 mas Słońca. Gdyby była nieco bardziej masywna, całkowicie by się zapadła, tworząc czarną dziurę Jej badania pozwolą na lepsze zrozumienie ekstremalnego środowiska tych niezwykle gęstych obiektów. Niewiele wiemy o tym, jak materia zachowuje się w tak gęstych miejscach, jak jądro atomu uranu. Gwiazda neutronowa przypomina takie wielkie jądro, mówi profesor Alex Filippenko.
      Gwiazdy neutronowe są tak gęste, że 1 cm3 ich materii waży około miliarda ton. Są więc najbardziej gęstymi obiektami we wszechświecie. Zaraz po czarnych dziurach. Tych jednych, ukrytych za horyzontem zdarzeń, nie jesteśmy w stanie badać.
      PSR J0952-0607 to tzw. „czarna wdowa”. To oczywiste odniesienie do pająków czarnych wdów, wśród których samica pożera po kopulacji znacznie mniejszego samca. Filippenko i profesor Roger W. Romani od ponad dekady badają systemy „czarnych wdów”, starając się określić górną granicę masy, jaką może osiągnąć pulsar.
      Dzięki połączeniu pomiarów z wielu systemów czarnych wdów, stwierdziliśmy, że gwiazda neutronowa może osiągnąć masę 2,35 ± 0,17 masy Słońca, stwierdza Romani. Jeśli zaś jest to granica limitu masy gwiazdy neutronowej, gwiazda taka zbudowana jest prawdopodobnie z mieszaniny neutronów oraz kwarków górnych i dolnych, ale nie z egzotycznej materii, takiej jak kwarki dziwne czy kaony. Taki limit wyklucza wiele proponowanych stanów materii, szczególnie egzotycznej materii we wnętrzu gwiazdy, dodaje Romani.
      Naukowcy są generalnie zgodni co do tego, że gwiazdy, których masa jądra przekracza 1,4 masy Słońca, zapadają się pod koniec życia, tworząc gęsty kompaktowy obiekt, w którego wnętrzu panuje tak wysokie ciśnienie, że wszystkie atomy tworzą mieszaninę neutronów i kwarków. Powstają w ten sposób gwiazdy neutronowe, które od początku istnienia obracają się. I mimo że w świetle widzialnym świecą zbyt słabo, byśmy mogli je dostrzec, emitują impulsy radiowe, promieniowania rentgenowskiego, a nawet promieniowania gamma, które omiatają Ziemię na podobieństwo latarni morskiej.
      Zwykłe pulsary obracają się z prędkością około 1 obrotu na sekundę. Zjawisko to łatwo wyjaśnić naturalnym obrotem gwiazdy z okresu, przed jej zapadnięciem się. Znamy jednak pulsary obracające się znacznie szybciej, nawet do 1000 razy na sekundę. To tak zwane pulsary milisekundowe. Tak szybki obrót trudno jest wytłumaczyć bez odwoływania się do materii z gwiazdy towarzyszącej, która je wchłaniania przez pulsar i napędza jego ruch.  Jednak w przypadku niektórych pulsarów milisekundowych nie potrafimy wykryć ich towarzysza. Jedno z wyjaśnień mówi, że już go nie ma, gdyż pulsar wchłonął całą jego materię.
      Naukowcy mówią, że gdy towarzysz gwiazdy neutronowej starzeje się i staje się czerwonym olbrzymem, pochodząca z niego materia opada na pulsar, który zaczyna się coraz szybciej obracać. Z obracającej się gwiazdy wydobywa się wiatr cząstek, który uderza w czerwonego olbrzyma i obdziera go z materii. Ten samonapędzający się proces może trwać do czasu, aż czerwony olbrzym skurczy się do wielkości planety, a nawet całkowicie zniknie. Tak właśnie ma dochodzić do pojawienia się samotnych pulsarów milisekundowych.
      Pulsar PSR J0952-0607 potwierdza tę hipotezę. Jego towarzyszem jest niewielka gwiazda, która właśnie traci materię i zbliża się do granicy masy planety, a z czasem może całkowicie zniknąć. Obecnie jej masa jest zaledwie 20-krotnie większa od masy Jowisza, ma więc masę 2% masy Słońca. Znajduje się w obrocie synchronicznym względem pulsara, czyli jest zwrócona do niego zawsze tą samą stroną. Przez to temperatura tej strony wynosi ok. 6000 stopni Celsjusza i sama gwiazda świeci na tyle mocno, że można ją dostrzec za pomocą teleskopu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Międzynarodowy zespół astronomów odkrył nowy rodzaj gwiazdy neutronowej. Gwiazda obraca się niezwykle powoli. Jej jeden obrót trwa 76 sekund. I jest unikatowa, gdyż znajduje się na „kosmicznym cmentarzu”, z którego nie powinny dobiegać do nas żadne sygnały. Początkowo członkowie zespołu MeerTRAP zarejestrowali pojedynczy impuls by następnie, wykorzystując jednocześnie wykonywane 8-sekundowe obrazy nieba, potwierdzić pozycję niezwykłej gwiazdy.
      Gwiazdy neutronowe to niezwykle gęste pozostałości po eksplozjach supernowych. Obecnie znamy około 3000 takich gwiazd w naszej galaktyce. Nowo odkryta gwiazda jest wyjątkowa. Odkrywcy sądzą, że może ona należeć do magnetarów o bardzo długi okresie. To przewidziana teoretycznie klasa gwiazd o ekstremalnie potężnych polach magnetycznych.
      Mamy olbrzymie szczęście, że impuls radiowy z gwiazdy przeciął Ziemię, mówi kierująca badaniami doktor Manisha Caleb z University of Sydney. Jest więc prawdopodobne, że w naszej galaktyce istnieje znacznie więcej tak wolno obracających się gwiazd neutronowych. Miałoby to olbrzymie znaczenie dla naszego rozumienia narodzin i ewolucji takich gwiazd. Większość badań nad pulsarami nie jest zaprojektowana, by szukać gwiazd o tak długim okresie, więc nie wiemy, ile takich gwiazd może istnieć, dodaje uczona.
      Nowo odkryta gwiazda, PSR J0901-4046 emituje co najmniej siedem różnych rodzajów impulsów, z których część emitowana jest regularnie. Sygnały te mają cechy charakterystyczne pulsarów, magnetarów o bardzo długim okresie, a nawet szybkich rozbłysków gamma (FRB).
      To pierwsza znana nam gwiazda z nowej klasy gwiazd neutronowych. Kwestią otwartą pozostają pytania, jak i czy w ogóle jest ona powiązana z innymi klasami, dodaje doktor Caleb.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Znajdź dobrego pracodawcę i pracuj w dziedzinie, która Cię motywuje, radzi Walter Orthmann, który niedawno pobił swój własny rekord długości pracy zawodowej w jednej firmie. Pan Orthmann wie, co mówi. Od 84 lat pracuje w przedsiębiorstwie produkującej tekstylia, ReneauxView. Niedawno skończył 100 lat i ani myśli udać się na emeryturę.
      Walter urodził się 19 kwietnia 1922 roku w miasteczku Brusque w Brazylii, licznie zamieszkanym przez emigrantów z Niemiec. Gdy miał 14 lat matka powiedziała mu, że jako najstarszy z 5 synów powinien wspomóc rodzinę i znaleźć pracę. Dzięki świetnej znajomości niemieckiego nie miał problemów ze znalezieniem zajęcia. Dnia 17 stycznia 1938 roku rozpoczął pracę w dziale logistyki firmy Industrias Renaux S.A. Z entuzjazmem uczył się nowych rzeczy, był zaangażowanym pracownikiem. Bardzo szybko przeniesiono go do działu sprzedaży. Okazało się to strzałem w dziesiątkę. Walter bardzo lubił kontakt z klientami. I szybko zaczął odnosić pierwsze sukcesy. Pojechałem do São Paulo i w czasie krótszym niż tydzień przywiozłem zamówienia na całą trzymiesięczną produkcję firmy, wspomina. W latach 50. jeździł już po całym kraju, zbierając zamówienia na firmowe produkty. Wtedy też został awansowany na stanowisko dyrektora ds. sprzedaży, które piastuje do dzisiaj.
      W czasie imponującej 84-letniej kariery odbierał pensję w 9 walutach. Tyle razy bowiem przeprowadzano w Brazylii denominację. Gdy rozpoczynał pracę walutą obowiązującą od niemal 120 był real. Wkrótce jednak wymieniono go na cruzeiro w stosunku 1000:1. Później były kolejne cruzeiro novo i cruzeiro, a obecnie znowu – od 1994 roku – pobiera pensję w realach.
      Mimo swoich 100 lat Walter cieszy się dobrym zdrowiem, pamięcią i jasnością umysłu. Bardzo ceni sobie rutynę. Każdego dnia budzi się, ćwiczy, przygotowuje do pracy i idzie do swojego ulubionego miejsca – biura. Nie planuję zbyt wiele. Nie dbam zbytnio o jutro. Liczy się tu i teraz. Więc... do roboty!, mówi.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W projektach związanych z syntezą termojądrową konieczne jest wykorzystanie materiałów odpornych na wysokie temperatury i uszkodzenia radiacyjne. Obiecujące pod tym względem są materiały bazujące na węglu, zwłaszcza nanorurki węglowe i grafen. Naukowcy z Zakładu Badań Reaktorowych NCBJ brali udział w badaniach odporności detektorów grafenowych na wysokie strumienie neutronów.

      Reaktory termojądrowe, takie jak powstające obecnie w Cadarache we Francji urządzenie badawcze ITER (International Thermonuclear Experimental Reactor), czy powstający w Hiszpanii jego następca – DEMO (Demonstration Power Plant), wykorzystują silne pole magnetyczne do uwięzienia plazmy, w której zachodzą reakcje syntezy lekkich jąder atomowych. By umożliwić efektywne zachodzenie reakcji syntezy, plazmę należy podgrzać do temperatury dziesiątek milionów stopni Celsjusza. Aby zapewnić stabilne działanie urządzenia, konieczna jest precyzyjna diagnostyka pola magnetycznego. Ze względu na działające na znajdującą się we wnętrzu reaktora elektronikę warunki, takie jak wysoka temperatura (rzędu kilkuset °C) czy silne promieniowanie neutronowe, większość komercyjnie dostępnych półprzewodnikowych czujników pola magnetycznego nie jest w stanie pracować w takich układach. Z tego powodu prowadzone są badania nad detektorami metalowymi, opartymi o chrom czy bizmut. Niestety, detektory oparte o nie mają niską czułość i duży przekrój czynny na oddziaływanie z neutronami.
      Interesującą alternatywą wydają się być detektory wykonane w technologii kwaziswobodnego grafenu epitaksjalnego na węgliku krzemu. Warstwy grafenu mogą być formowane w bardzo czułe sensory efektu Halla: jeżeli przewodnik, przez który płynie prąd elektryczny, znajduje się w polu magnetycznym, pojawia się w nim różnica potencjałów – tzw. napięcie Halla, które może posłużyć do pomiaru pola magnetycznego. Zbadana została już odporność grafenu na promieniowanie. Badania przeprowadzono wykorzystując zarówno wiązki jonów, protonów, jak i elektronów, i nie wykryto istotnych zmian właściwości napromienionych próbek. Przewidywania teoretyczne sugerują, że podobnie grafen reaguje na promieniowanie neutronowe, jednak nigdy wcześniej nie zostało to bezpośrednio potwierdzone eksperymentalnie.
      W pracy, która ukazała się na łamach czasopisma Applied Surface Science, zbadano wpływ prędkich neutronów na układ detektora opartego na grafenie. Instytut Mikroelektroniki i Fotoniki (IMiF) funkcjonujący w Sieci Badawczej Łukasiewicz wytworzył strukturę składającą się z grafenu na wysyconej atomami wodoru powierzchni węglika krzemu 4H-SiC(0001). Całość pokryto dielektryczną pasywacją z tlenku glinu, stanowiącą zabezpieczenie środowiskowe warstwy aktywnej detektora – mówi dr inż. Tymoteusz Ciuk, kierujący pracami w Łukasiewicz-IMiF. Tak przygotowany układ został następnie poddany napromienieniu neutronami prędkimi wewnątrz rdzenia reaktora MARIA w NCBJ.
      Zamontowana w rdzeniu reaktora MARIA unikatowa instalacja do napromieniania neutronami prędkimi pozwala nam przeprowadzać badania materiałów, bądź podzespołów przewidywanych do wykorzystania w układach termojądrowych, w których także są generowane prędkie neutrony – opowiada dr inż. Rafał Prokopowicz, kierownik Zakładu Badań Reaktorowych NCBJ, współautor pracy. W przypadku badań nad strukturami detekcyjnymi z grafenu, próbki napromienialiśmy przez ponad 120 godzin neutronami prędkimi o fluencji rzędu 1017 cm–2, by oddać warunki, na jakie narażona jest elektronika w instalacjach termojądrowych – dodaje mgr Maciej Ziemba z Zakładu Badań Reaktorowych. „Aby zapewnić bezpieczeństwo badań, testy podzespołów wykonano, gdy aktywność próbek nie stanowiła już zagrożenia, czyli po kilku miesiącach od napromienienia”.
      Zarówno przed napromienieniem, jak i po napromienieniu próbek, w Instytucie Fizyki Politechniki Poznańskiej dokładnie zbadano ich strukturę i właściwości elektryczne. Wykorzystano do tego spektroskopię Ramana, badania efektu Halla, jak również wielkoskalowe modelowanie z użyciem teorii funkcjonału gęstości (DFT – density functional theory). Dodatkowo, naukowcy z Politechniki Poznańskiej przeprowadzili charakteryzację napromienionych struktur po ich wygrzewaniu w temperaturze od 100 do 350°C, by zbadać działanie temperatury, w połączeniu z wpływem prędkich neutronów, na właściwości elektryczne. Dzięki testom wykryto na przykład, że z powodu promieniowania, w materiale pojawia się zależność właściwości elektrycznych od temperatury, która nie występowała przed umieszczeniem próbek w strumieniu neutronów – wyjaśnia dr inż. Semir El-Ahmar, kierujący badaniami na Politechnice Poznańskiej. Co więcej, promieniowanie neutronowe powoduje zmniejszenie gęstości nośników ładunku w badanej strukturze. Okazuje się jednak, że odpowiada za to warstwa wodoru, a więc napromienienie jedynie w umiarkowanym stopniu wpływa na strukturę i właściwości grafenu.
      Na podstawie charakteryzacji właściwości badanych struktur przed napromienieniem i po ich napromienieniu, oceniono odporność grafenu na promieniowanie neutronowe jako bardzo dobrą. Gęstość uszkodzeń radiacyjnych była 7 rzędów wielkości mniejsza, niż wartość strumienia neutronów, co oznacza dość niski przekrój czynny grafenu na oddziaływanie z neutronami prędkimi. Mimo, iż wystąpiły uszkodzenia struktury spowodowane promieniowaniem, to w porównaniu z detektorami bazującymi na metalach, czułość układu z grafenem na pole magnetyczne pozostaje kilka rzędów wielkości większa – podsumowuje wyniki dr El-Ahmar. Dodatkowo, okazało się, że duża część uszkodzeń była związana nie z samymi warstwami grafenu, a z warstwą wodoru, która z kolei przy temperaturach powyżej 200°C, jakie będą panować w instalacjach takich jak DEMO, wykazuje wręcz pewien potencjał samo-naprawczy. Z uwagi na to, grafenowe detektory pola magnetycznego mogą stanowić obiecujące struktury do wykorzystania w reaktorach termojądrowych.
      Nad zastosowaniem grafenu jako bazy przy detekcji pola magnetycznego w instalacjach termojądrowych prowadzone będą dalsze badania. Naukowcy rozważają wykorzystanie innego typu podłoża – np. 6H-SiC(0001), na którym formowana struktura może być bardziej odporna na promieniowanie neutronowe. Rozważane jest też zastąpienie warstwy wodoru buforową warstwą atomów węgla.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astronomowie z University of Wisconsin-Milwaukee odnaleźli najzimniejszego i najsłabiej świecącego białego karła. Gwiazda jest tak zimna, że znajdujący się w niej węgiel skrystalizował i powstał olbrzymi diament wielkości Ziemi.
      To naprawdę niezwykły obiekt. Uważamy, że w przestrzeni kosmicznej znajduje się wielka liczba starych białych karłów. Trudno je zobaczyć i nie wiemy, gdzie patrzeć. Nie jest możliwe natrafienie bezpośrednio na nie - mówi profesor David Kaplan.
      Białe karły to niezwykle gęste obiekty, które są ostatnim etapem życia gwiazd podobnych do Słońca. Składają się głównie z węgla i tlenu. Stygną i gasną przez miliardy lat. Białe karły trudno jest jednak badać, gdyż ich odnalezienie jest niemal niemożliwe.
      Wspomniany biały karzeł, który liczy sobie 11 miliardów lat, został odnaleziony dzięki Green Bank Telescope oraz Very Long Baseline Array. Teleskopy te nie pozwoliły na bezpośrednią obserwację białego karła. Urządzenia badały milisekundowego milisekundowego pulsara PSR J2222-0137, który obraca się z prędkością 30 razy na sekundę.
      Obserwacje ujawniły, że pulsar jest grawitacyjnie powiązany z innym obiektem, z którym obiegają się nawzajem w ciągu 2,45 dnia. Obiekt ten to gwiazda neutronowa lub, co bardziej prawdopodobne, niezwykle zimny biały karzeł.
      Obserwacje pozwoliły na precyzyjne określenie pozycji pulsara. Znamy jego pozycję z dokładnością lepszą niż 1 piksel - mówi profesor Kaplan. To z kolei daje nadzieję, że uda się bezpośrednio zaobserwować towarzyszącego mu białego karła. Uczeni stwierdzili dotychczas, że masa pulsara wynosi 1,2 masy Słońca, a masa białego karła to 1,05 masy Słońca. Mimo, że towarzysza pulsara ciągle nie zaobserwowano, to jego kołowa orbita stanowi dodatkowy dowód, że to biały karzeł. Gwiazdy neutronowe mają orbity eliptyczne.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...